Case Study: Malpasset Dam-Break Simulation using a Two-Dimensional Finite Volume Method

2002 ◽  
Vol 128 (5) ◽  
pp. 460-472 ◽  
Author(s):  
Alessandro Valiani ◽  
Valerio Caleffi ◽  
Andrea Zanni
Author(s):  
Roque Corral ◽  
Javier Crespo

A novel high-order finite volume method for the resolution of the Navier-Stokes equations is presented. The approach combines a third order finite volume method in an unstructured two-dimensional grid, with a spectral approximation in the third dimension. The method is suitable for the resolution of complex two-dimensional geometries that require the third dimension to capture three-dimensional non-linear unsteady effects, such as those for instance present in linear cascades with separated bubbles. Its main advantage is the reduction in the computational cost, for a given accuracy, with respect standard finite volume methods due to the inexpensive high-order discretization that may be obtained in the third direction using fast Fourier transforms. The method has been applied to the resolution of transitional bubbles in flat plates with adverse pressure gradients and realistic two-dimensional airfoils.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Szu-Hsien Peng

The purpose of this study is to model the flow movement in an idealized dam-break configuration. One-dimensional and two-dimensional motion of a shallow flow over a rigid inclined bed is considered. The resulting shallow water equations are solved by finite volumes using the Roe and HLL schemes. At first, the one-dimensional model is considered in the development process. With conservative finite volume method, splitting is applied to manage the combination of hyperbolic term and source term of the shallow water equation and then to promote 1D to 2D. The simulations are validated by the comparison with flume experiments. Unsteady dam-break flow movement is found to be reasonably well captured by the model. The proposed concept could be further developed to the numerical calculation of non-Newtonian fluid or multilayers fluid flow.


Sign in / Sign up

Export Citation Format

Share Document