Automated Damage Localization and Quantification in Concrete Bridges Using Point Cloud-Based Surface-Fitting Strategy

2021 ◽  
Vol 35 (6) ◽  
pp. 04021028
Author(s):  
Hyunjun Kim ◽  
Jinyoung Yoon ◽  
Jonghwa Hong ◽  
Sung-Han Sim
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 106464-106470
Author(s):  
Jiming Sa ◽  
Hanwen Gu ◽  
Yilun An ◽  
Yijie Luo ◽  
Zhushanying Zhang

2012 ◽  
Vol 503-504 ◽  
pp. 215-218 ◽  
Author(s):  
Da Wei Wu ◽  
Xiao Fei Ding ◽  
Gang Tong

This paper analyzes the structure of molding tool for composite component, and proposes a method of surface design of molding tool based on reverse engineering. By using handy laser scanner, the point cloud data is obtained from the composite component, which is processed in Geomagic Studio. Then the processed data is imported into CATIA for Surface fitting. The surface of molding tool for composite component is rapidly and accurately designed by analyzing 3D error and comparing cross-sectional data.


Author(s):  
S. Xing ◽  
P. Li ◽  
Q. Xu ◽  
D. Wang ◽  
P. Li

Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from “WATER (Watershed Allied Telemetry Experimental Research)” are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.


Author(s):  
Wenlei Xiao ◽  
Guiyu Liu ◽  
Gang Zhao

Aero-engine is an essential component of the aircraft. Due to the high cost of raw materials and precise structure, the maintenance cost of aero-engine is great. By repairing worn blades rather than replacing them with new ones, the aero-engine maintenance cost can be reduced effectively. For repairing worn blades, existing methods mainly generate tool path based on the reconstructed surface with the aid of CAM software. In this paper, an effective tool path generation method for repairing blades after additive manufacturing process is presented, which overcomes the low efficiency and complicated process weakness of existing methods. The tool path is generated directly with point clouds without surface fitting. By splitting point cloud and analyzing geometric parameters of points, machining areas could be recognized from the entire blade model. The cutter location point is generated by extending on the normal vector direction of the corresponding point. The five-axis tool path could be obtained by connecting cutter location points in turns. Tool path optimization is further studied after the generation process. These algorithms eliminate the time consumption caused by surface fitting operations, and could generate five-axis tool paths for repairing aero-engine blades efficiently.


Sign in / Sign up

Export Citation Format

Share Document