3d scanner
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 171)

H-INDEX

16
(FIVE YEARS 4)

Author(s):  
V. A. Ganchenko ◽  
E. E. Marushko ◽  
L. P. Podenok ◽  
A. V. Inyutin

This article describes evaluation the information content of metal objects surfaces for classification of fractures using 2D and 3D data. As parameters, the textural characteristics of Haralick, local binary patterns of pixels for 2D images, macrogeometric descriptors of metal objects digitized by a 3D scanner are considered. The analysis carried out on basis of information content estimation to select the features that are most suitable for solving the problem of metals fractures classification. The results will be used for development of methods for complex forensic examination of complex polygonal surfaces of solid objects for automated system for analyzing digital images.


2022 ◽  
Vol 58 (4) ◽  
pp. 114-129
Author(s):  
Yongsun Lee ◽  
Jinrae Cho ◽  
Seongryeol Han

The aim of the paper consisted in the development of an injection mold for plastic horn cover parts in commercial vehicles. Three mold types were designed in anticipation of the structure and quality of molds, and injection molding numerical analyses were conducted for the three types of molds. One mold type was selected in consideration of the resin flow patterns inside the mold, surface quality, and final deflection amount of the horn cover. To perform optimal injection molding using the selected mold, optimization of injection molding parameters was performed using the Taguchi method, one of the designs of experiment (DOE) and ANOVA methods. As a result, it was confirmed that the deflection amount of the molding under optimal molding parameters decreased by about 34.3% compared to the deflection amount before optimization of the molding parameters. Based on these encouraging results, the previously selected mold type was actually manufactured. The horn cover was molded using the obtained optimal injection molding parameters to the manufactured mold. To verify the precision of the molded horn cover, the deflection amount of the molding was measured with a 3D scanner. The deflection amount of the horn cover was estimated to be about 11% to 43% larger for each measurement position than the deflection amounts in the analysis results. The manufactured mold was revised to solve the problem that the deflection amount of the actual molding is larger than the deflection amount predicted by injection molding analysis. The dimensions and surface quality of the horn cover with a revised mold were satisfactory.


2022 ◽  
Vol 16 (1) ◽  
pp. 1-14
Author(s):  
Andrzej Gessner ◽  
Wojciech Ptaszyński ◽  
Waldemar Adam
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7761
Author(s):  
Krzysztof Żaba ◽  
Sandra Puchlerska ◽  
Marzanna Książek ◽  
Ryszard Sitek ◽  
Paweł Wiśniewski ◽  
...  

This article presents the results of research on the use of modern nondestructive methods such as 3D scanning, thermography and computed tomography (CT) to assess the quality of multilayer ceramic molds. Tests were performed on spherical samples of multilayer ceramic molds in the raw state. Samples were made of molding sands composed of quartz and molochite powders, the alcoholic binder hydrolyzed ethyl silicate (ZKE) and an aqueous binder based on colloidal silica. Thickness measurements of spherical forms were made using a 3D scanner. Porosity measurements were made using CT. Additionally, thermography observations of the mold cooling process were made with controlled temperature and humidity. The results of temperature measurements of samples were compared with measurements of thickness and porosity. The practical goal was to determine the possibility of using thermography, 3D scanning and CT as a quick method for detecting mold defects by varying their thickness, porosity and cracks and for final verification of the ceramic molds’ condition before casting.


2021 ◽  
Vol 2021 (6) ◽  
pp. 5327-5333
Author(s):  
JAKUB HRBAL ◽  
◽  
JOZEF PETERKA ◽  
IVAN BURANSKY ◽  
JAN MILDE ◽  
...  

This article deals with the control of the geometry of manufactured tools. The geometry of the cutting tool has a great influence on the machining process. One of the processes of manufacturing cutting tools is grinding. Grinding cutting tools is a complex process after which it is necessary to check the geometry of the tools. Five solid drilling tools were manufactured for the experiment. The measured parameters were tool diameter, helix angle, point angle, rake angle, relief angle and core diameter of the cutting tools. The geometry of the cutting tools was measured on a non-contact structured 3D scanner ATOS Triple Scan light. The measurement results were evaluated using GOM software. The scanning results were compared with the geometry measurement on an optical measuring device Zoller Genius 3s. It has been found that the use of a non-contact structured 3D scanner is suitable for checking the geometry of cutting tools. Furthermore, the article deals with the roughness arising when grinding a sintered carbide flute.


Technè ◽  
2021 ◽  
pp. 105-117
Author(s):  
Gianluca Gariani ◽  
Charlotte Hochart ◽  
Nicolas Mélard

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8308
Author(s):  
Damir Filko ◽  
Domagoj Marijanović ◽  
Emmanuel Karlo Nyarko

Chronic wounds, or wounds that are not healing properly, are a worldwide health problem that affect the global economy and population. Alongside with aging of the population, increasing obesity and diabetes patients, we can assume that costs of chronic wound healing will be even higher. Wound assessment should be fast and accurate in order to reduce the possible complications, and therefore shorten the wound healing process. Contact methods often used by medical experts have drawbacks that are easily overcome by non-contact methods like image analysis, where wound analysis is fully or partially automated. This paper describes an automatic wound recording system build upon 7 DoF robot arm with attached RGB-D camera and high precision 3D scanner. The developed system presents a novel NBV algorithm that utilizes surface-based approach based on surface point density and discontinuity detection. The system was evaluated on multiple wounds located on medical models as well as on real patents recorded in clinical medical center.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1529
Author(s):  
Michal Mára ◽  
Přemysl Kheml ◽  
Kristýna Carrera ◽  
Jindřich Fornůsek ◽  
Radoslav Sovják

Ultra-high-performance steel-fibre-reinforced concrete (UHP-SFRC) is a technologically advanced composite with a high ability to absorb and dissipate mechanical energy. This work investigates the possibility of increasing ballistic resistance by adding different percentages of corundum and basalt aggregate into this type of concrete. The most common type of ammunition, a 7.62 mm × 39 mm calibre with a full-metal jacket and a mild-steel core (FMJ-MSC), was used to test all samples. The size of the damage and the mode of failure were determined using a 3D scanner operating on the principle of photogrammetry. The experimental campaign showed that the addition of basalt and, especially, corundum aggregate has a positive effect on ballistic resistance. In particular, the increase in compressive strength and the slight decrease in depth of penetration (DOP) was observed in the case of the usage of the corundum aggregate.


Prosthesis ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 415-427
Author(s):  
Simon Hazubski ◽  
Derya Bamerni ◽  
Andreas Otte

(1) Background: This paper presents a conceptual design for an anthropomorphic replacement hand made of silicone that integrates a sensory feedback system. In combination with a motorized orthosis, it allows performing movements and registering information on the flexion and the pressure of the fingers. (2) Methods: To create the replacement hand, a three-dimensional (3D) scanner was used to scan the hand of the test person. With computer-aided design (CAD), a mold was created from the hand, then 3D-printed. Bending and force sensors were attached to the mold before silicone casting to implement the sensory feedback system. To achieve a functional and anthropomorphic appearance of the replacement hand, a material analysis was carried out. In two different test series, the properties of the used silicones were analyzed regarding their mechanical properties and the manufacturing process. (3) Results: Individual fingers and an entire hand with integrated sensors were realized, which demonstrated in several tests that sensory feedback in such an anthropomorphic replacement hand can be realized. Nevertheless, the choice of silicone material remains an open challenge, as there is a trade-off between the hardness of the material and the maximum mechanical force of the orthosis. (4) Conclusion: Apart from manufacturing-related issues, it is possible to cost-effectively create a personalized, anthropomorphic replacement hand, including sensory feedback, by using 3D scanning and 3D printing techniques.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8026
Author(s):  
Dariusz Pojda ◽  
Agnieszka Anna Tomaka ◽  
Leszek Luchowski ◽  
Michał Tarnawski

Multimodal imaging, including 3D modalities, is increasingly being applied in orthodontics, both as a diagnostic tool and especially for the design of intraoral appliances, where geometric accuracy is very important. Laser scanners and other precision 3D-imaging devices are expensive and cumbersome, which limits their use in medical practice. Photogrammetry, using ordinary 2D photographs or video recordings to create 3D imagery, offers a cheaper and more convenient alternative, replacing the specialised equipment with handy consumer cameras. The present study addresses the question of to what extent, and under what conditions, this technique can be an adequate replacement for the 3D scanner. The accuracy of simple surface reconstruction and of model embedding achieved with photogrammetry was verified against that obtained with a triangulating laser scanner. To roughly evaluate the impact of image imperfections on photogrammetric reconstruction, the photographs for photogrammetry were taken under various lighting conditions and were used either raw or with a blur-simulating defocus. Video footage was also tested as another 2D-imaging modality feeding data into photogrammetry. The results show the significant potential of photogrammetric techniques.


Sign in / Sign up

Export Citation Format

Share Document