Euler–Bernoulli Pile Element for Nonlinear Buckling Analysis of Single Piles in Slope

2021 ◽  
Vol 21 (9) ◽  
pp. 04021170
Author(s):  
Weihang Ouyang ◽  
Si-Wei Liu ◽  
Jianhong Wan ◽  
Yi Yang
Author(s):  
Kenji Yamamoto ◽  
Hayato Utebi

In order to analyze the buckling behavior of lattice shells stiffened by cables or slender braces without pre-tension, it is necessary to consider the no-compression property of braces. This paper proposes an innovative method of linear buckling analysis that considers the no-compression property of braces. Moreover, in order to examine the proposed method's validity, its results are compared with the results from a nonlinear buckling analysis with geometrical nonlinearity and material nonlinearity to express the no-compression property of braces. The results show that the proposed method can well-predict the buckling behaviors of lattice shells stiffened by tension braces.


Author(s):  
Qianyu Shi ◽  
Zhijian Wang ◽  
Hui Tang ◽  
Qi Li

Abstract Large scale molten salt storage tanks are widely used in the solar thermal power systems. For these tanks, buckling is a primary failure mode because of its features such as large scale, thinned wall and high temperature. Suffering high temperature condition is a major distinction between molten salt storage tanks and other water or oil tanks. High temperature can cause large thermal deformation for large scale structures which may have an effect on the safety assessment, especially on buckling assessment. Meanwhile, the hydrostatic pressure of molten salt can also cause the change of tank’s configuration. In this paper, a typical large molten salt storage tank has been studied. The critical buckling loads of the tank roof are obtained using nonlinear buckling analysis considering thermal loads and hydrostatic pressure. The results are discussed and some conclusions are proposed for engineering design.


Author(s):  
Qianyu Shi ◽  
Zhijian Wang ◽  
Hui Tang

Design of Large-scale and light-weight pressure vessels is an inexorable trend of industrial development. These large thin-walled vessels are prone to buckling failure when subjected to compression loads and other destabilizing loads. Thus, buckling analysis is a primary and even the most important part of design for these pressure vessels. Local buckling failure will probably occur when cylindrical shells with nozzle subjected to axial loads. In this paper, a FE model of cylindrical shell with a normal nozzle is established in ANSYS Workbench. The bifurcation buckling analysis is performed by using an elastic-plastic stress analysis with the effect of nonlinear geometry, and a collapse analysis is performed with an initial imperfection. The axial buckling loads are obtained by these two types of method. Some issues about nonlinear buckling analysis are discussed through this study case.


2010 ◽  
Vol 16 (11) ◽  
pp. 1909-1920 ◽  
Author(s):  
Torsten Hauck ◽  
Wolfgang H. Müller ◽  
Ilko Schmadlak

Sign in / Sign up

Export Citation Format

Share Document