Volume 3: Design and Analysis
Latest Publications


TOTAL DOCUMENTS

81
(FIVE YEARS 81)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791883839

Author(s):  
Omid Malekzadeh ◽  
Matthew Monid ◽  
Michael Huang

Abstract Three-Dimensional (3D) CAD models are utilized by many designers; however, they are rarely utilized to their full potential. The current mainstream method of design process and communication is through design documentation. They are limited in depth of information, compartmentalized by discipline, fragmented into various segments, communicated through numerous layers, and finally, printed onto an undersized paper by the stakeholders and end-users. Large nuclear projects, such as refurbishments and decommissioning, suffer from spatial, interface, and interreference challenges, unintentional cost and schedule overruns, and quality concerns that can be rooted to the misalignments between designed and in-situ or previously as-built conditions that tend to stem from inaccessibility and lack of adequate data resolution during the transfer of technical information. This paper will identify the technologies and the methodology used during several piping system modifications of existing nuclear power plants, and shares the lessons learned with respect to the benefits and shortcomings of the approach. Overall, it is beneficial to leverage available multi-dimensional technologies to enhance various engineering and execution phases. The utilization and superposition of various spatial models into 3D and 4D formats, enabled the modification projects to significantly reduce in-person plant walkdown efforts, provide highly accurate as-found data, and enable stakeholders of all disciplines and trades to review the as-found, as-designed, and simulated as-installed modification; including the steps in between without requiring significant plant visits. This approach will therefore reduce the field-initiated changes that tend to result in design/field variations; resulting in less reliance on Appendix T of ASME BPVC Section III, reduction in the design registration reconciliations efforts, and it aligns with the overarching goal of EPRI guideline NCIG-05. Beyond the benefits to design and execution, the multidimensional approach will provide highly accurate inputs to some of the nuclear safety’s Beyond Design Basis Assessments (BDBA) and allowed for the incorporation of actual design values as input and hence removing the unnecessary over-conservatisms within some of the inputs.


Author(s):  
Durlabh Bartaula ◽  
Yong Li ◽  
Smitha Koduru ◽  
Samer Adeeb

Abstract Pipelines carrying oil and gas are susceptible to fatigue failure (i.e., unstable fatigue crack propagation) due to fluctuating loading such as varying internal pressure and other external loadings. Fatigue crack growth (FCG) prediction through full-scale pipe tests can be expensive and time consuming, and experimental data is limited particularly in the face of large uncertainty involved. In contrast, numerical simulation techniques (e.g., XFEM) can be alternative to study the FCG, given that numerical models can be theoretically and/or experimentally validated with reasonable accuracy. In this study, capabilities and limitations of existing fatigue analysis code (e.g., direct cyclic approach with XFEM) in Abaqus for low cycle fatigue simulation are explored for compact-tension (CT) specimens and pipelines assuming linear elastic material behavior. The simulated FCG curve for a CT specimen is compared with that obtained from the analytical method using the stress intensity factor prescribed in ASTM E647. However, for real pipelines with elastic-plastic behavior, direct cyclic approach is not suitable, and an indirect cyclic approach is used based on the fracture energy parameters (e.g., J integral) calculated using XFEM in Abaqus. FCG law (e.g., power law relationship like Paris law) is used to generate the fatigue crack growth curve. For comparison, the FCG curve obtained through direct cyclic approach for pipelines assuming linear elastic material is also presented. The comparative studies here indicate that XFEM-based FCG simulation using appropriate techniques can be applied to pipelines for fatigue life prediction.


Author(s):  
Barry Millet ◽  
Kaveh Ebrahimi

Abstract This paper will clarify the point of transition where the behavior of the dish of a torispherical head goes from thin wall theory (collapse failure and membrane) to thick wall (burst failure) as the head dish radius to thickness ratios (L/t) gets smaller. There are several stated ratio limits for this transition. Three separate Welding Research Bulletins WRC 364 New Design Curves for Torispherical Heads[1], WRC 444 Buckling Criteria for Torispherical Heads Under Internal Pressure [3] and, WRC 501 Design of Torispherical and Ellipsoidal Heads Subjected to Internal Pressure[4] each provide a different definition of the transition point, that being 16.67, 15 and 20 respectively. This paper will review the actual test performed for L/t ratios from 20 down to 15 (which is the lowest ratio test run) and provide the results of a numerical desktop study in lieu of actual testing. Linear elastic, elastic perfectly plastic limit load and elastic plastic limit load finite element analysis will be parametrically run across many L/t ratios and the knuckle radius will be varied across the runs. The results will be reviewed to check through wall behavior to find the transition point of thin to thick wall behavior. These will also be compared against the existing ASME BVP Section VIII Division 2 [5] formulas.


Author(s):  
Maral Taghva ◽  
Lars Damkilde

Abstract Modifications in aged process plants may subject piping systems to fluid transient scenarios, which are not considered in the primary design calculations. Due to lack of strict requirements in ASME B31.3 the effect of this phenomenon is often excluded from piping structural integrity reassessments. Therefore, the consequences, such as severe pipe motion or even rupture failure, are discovered after modifications are completed and the system starts to function under new operational conditions. The motivation for this study emanated from several observations in offshore oil and gas piping systems, yet the results could be utilized in structural integrity assessments of any piping system subjected to pressure waves. This paper describes how to provide an approximate solution to determine maximum bending stresses in piping structures subjected to wave impulse loads without using rigorous approaches to calculate the dynamic response. This paper proposes to consider the effect of load duration in quasi-static analysis to achieve more credible results. The proposed method recommends application of lower dynamic load factors than commonly practiced values advised by design codes, for short duration loads such as shock waves. By presenting a real-life example, the results of improved and commonly practiced quasi-static analysis are compared with the site observations as well as dynamic analysis results. It is illustrated that modified quasi-static solution shows agreement with both dynamic analysis and physical behavior of the system. The contents of this study are particularly useful in structural strength re-assessments where the practicing engineer is interested in an approximated solution indicating if the design criteria is satisfied.


Author(s):  
Hossein Ashrafizadeh ◽  
Ryan Schultz ◽  
Bo Xu ◽  
Pierre Mertiny

Abstract High strength-to-weight ratio, excellent corrosion resistance, flexibility, superior fatigue performance, and cost competitiveness have made thermoplastic fiber reinforced polymer composites (TP-FRPCs) a material of choice for the manufacture of pipe products for use in the oil and gas industry. The TP matrix not only protects the composite structure from brittle cracking caused by dynamic loads, it also provides improved flexibility for bending of pipes to enable easier field installation and reduces the requirement for pre-fabricated bent connections. Despite the attractive mechanical performance, the design, development and qualification evaluation of TP-FRPC components for a large portion relies on experimental testing. The time and expense of manufacturing new composite prototypes and performing full-scale testing emphasizes the value of a predictive modeling. But, modeling TP-FRPC structures is not a trivial task due to their anisotropic and time-dependent properties. In this study, a new technique based on the finite element method is proposed to model anisotropic time-dependent behavior of TP-FRPCs. In the proposed technique the composite mechanical properties are captured by superimposing the properties of two fictitious materials. To that end, two overlapping three-dimensional elements with similar nodes were assigned different material properties. One of the elements is assigned to have time-dependent properties to capture the viscoelastic behavior of the matrix while the other element is given linear anisotropic properties to account for the anisotropy induced by the fiber reinforcement. The model was calibrated using data from uniaxial tensile creep tests on coupons made from pure matrix resin and uniaxial tension tests on TP-FRPC tape parallel to the fiber direction. Combined time hardening creep formulation, ANSYS 19.2 implicit analysis, and ANSYS Composite PrepPost were employed to formulate the three-dimensional finite element model. The model was validated by comparison of model predictions with experimental creep strain obtained from TP FRPC tubes with ±45° fiber layups subjected to uniaxial intermediate and high stress for 8 hours. The results obtained showed that for the tubes subjected to intermediate stress, the model predicted the creep rate in the secondary region with less than 5% error. However, for tubes subjected to high stress, the model overestimated the creep rate with over 30% error. This behavior was due to large deformation at this high level of stress and inability of the model to capture fiber realignment towards the pipe longitudinal direction and, therefore, capture an increase in stiffness. Overall, comparison of the simulation results with experimental data indicated that the technique proposed can be used as a reliable model to account for deformations caused by secondary creep in the design of TP-FRPC structures as far as deformations are relatively small and limited to a certain strain threshold. Acceptable predictions of the model, its simplicity in calibration, and limitations on available models that can simultaneously account for time-dependency and anisotropic properties, further emphasize the value of the developed model.


Author(s):  
Koji Miyoshi ◽  
Masayuki Kamaya

Abstract Mixing flow causes fluid temperature fluctuations near the pipe walls and may result in fatigue crack initiation. The authors have previously reported the loading sequence effect on thermal fatigue in a mixing tee. The fatigue damage around the hot spot, which was heated by the hot jet flow from the branch pipe, obtained by Miner’s rule was less than 1.0. Since the strain around the hot spot had waveforms with periodic overload, the loading sequence with periodic overload caused reduction of the fatigue life around the hot spot. In this study, the effect of a single overload on the fatigue crack growth rate was investigated in order to clarify the reduction of the fatigue life at the mixing tee due to strain with periodic overload. In addition, the prediction method of the fatigue life for the variable thermal strain at the mixing tee was discussed. It was shown the crack growth rate increased after an overload for both cases of tensile and compressive overloads. The effective strain amplitude increased after the application of a single overload. The fatigue life curve was modified by considering the increment of the effective strain range. The fatigue damage recalculated using the modified fatigue life curve was larger than 1.0 except in a few cases. The fatigue life could be assessed conservatively for variable strain at the mixing tee using the developed fatigue curve and Miner’s rule.


Author(s):  
Naoto Kasahara ◽  
Takashi Wakai ◽  
Izumi Nakamura ◽  
Takuya Sato ◽  
Masakazu Ichimiya

Abstract As a lesson learned from the Fukushima nuclear power plant accident, the industry recognized the imporatance of mitigating accident consequences after Beyond Design Basis Events (BDBE). We propose the concept of applying fracture control to mitigate failure consequences of nuclear components under BDBE. Requirements are different between Design Basis Events (DBE) and BDBE. In the case of DBE, it requires preventing occurrence of failures, and thus, its structural approach is strengthening. On the other hand, BDBE requires mitigating failure consequences. The simple strengthening approach with DBE is inappropriate for this BDBE requirement. As the structural strengthening approach for mitigating failure consequences, we propose applying the concept of fracture control. The fundamental idea is to control the sequence of failure locations and modes. Preceding failures release loadings and prevent further catastrophic consequent failures. At the end, locations and modes of failure are limited. Absolute strength evaluation for each failure mode is not easy especially for BDBE. Fracture control, however, requires only relative strength evaluation among different locations and failure modes. Our paper discusses two sample applications of our proposed method. One is a fast reactor vessel under severe accident conditions. Our method controls the upper part of a vessel above the liquid coolant surface weaker than the lower part. This strength control maintains enough coolant even after a high pressure and high temperature condition causes failure of the reactor vessel because structural failure in the upper part releases internal pressure to protect the lower part. The other example is the piping under a large earthquake. Our proposal controls strength of supports weaker than the piping itself. When the supports fail first, natural frequencies of piping systems drop. When the natural frequencies of dominant modes are lower than the peak frequency of seismic loads, seismic loads hardly transfer to the piping and catastrophic failures such as collapse or break are avoided.


Author(s):  
Qianyu Shi ◽  
Zhijian Wang ◽  
Hui Tang ◽  
Qi Li

Abstract Large scale molten salt storage tanks are widely used in the solar thermal power systems. For these tanks, buckling is a primary failure mode because of its features such as large scale, thinned wall and high temperature. Suffering high temperature condition is a major distinction between molten salt storage tanks and other water or oil tanks. High temperature can cause large thermal deformation for large scale structures which may have an effect on the safety assessment, especially on buckling assessment. Meanwhile, the hydrostatic pressure of molten salt can also cause the change of tank’s configuration. In this paper, a typical large molten salt storage tank has been studied. The critical buckling loads of the tank roof are obtained using nonlinear buckling analysis considering thermal loads and hydrostatic pressure. The results are discussed and some conclusions are proposed for engineering design.


Author(s):  
Bonghee Lee ◽  
Ilkwun Nam ◽  
Sangyun Park ◽  
Sookyum Kim ◽  
Yongbaek Kim

Abstract Thermal stratification-induced stresses could lead to a serious failure and fatigue crack on piping systems. U.S. NRC Bulletin 88-08 [1] requires to investigate which unisolable pipings are subjected to the thermal stratification and to demonstrate compliance with applicable code limits during the piping design stage by incorporating the thermal stratification-induced stresses into the fatigue evaluation. In this paper, the computational fluid dynamic (CFD) analyses considering both the out-leakage case by turbulent penetration and the in-leakage case by valve leakage were performed for the unisolable portion of the Direct Vessel Injection (DVI) piping between the reactor vessel nozzle and the first check valve to determine the change of temperature gradient on the pipe wall as a function of time due to the thermal stratification. And then the CFD-based temperature distributions on the pipe wall at each time interval were transformed as input data for the structural analysis to evaluate the stresses induced by the global bending moments and local stresses by the thermal stratification of the DVI piping. The localized thermal stratification stress intensities were directly extracted from the 3-D model using the ANSYS program and were categorized as the three stress terms induced by ΔT1, ΔT2, and Ta - Tb defined in NB-3600 of ASME B&PV Sec. III [2], but including thermal stratification effects herein for the fatigue analysis. To evaluate the air environment- and LWR environment-based fatigue damages for the DVI piping, the bending moments and three local stress terms due to the thermal stratification were incorporated into the fatigue analysis. NB-3200/-3600 of ASME B&PV Sec. III- and Regulatory Guide 1.207-based cumulative usage factors [3, 4] were compared with each other to investigate the effects of fatigue damages considering the thermal stratification in the air and light water reactor (LWR) environments.


Author(s):  
Alex Mayes ◽  
Phillip Wiseman ◽  
Kshitij P. Gawande

Abstract American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF, Subparagraph NF-3121.11 does not require that thermal stresses in supports be evaluated. Historically, pipe support engineers have not been concerned with thermal stresses of pipe and component supports, but determining material temperature limits and allowable stresses have been a major role in designing and analyzing supports. Thus, heat transfer is often investigated in finding the temperature of pipe supports and parts of pipe supports that are not in direct contact with pipe or pipe components. There are also other Codes and standards that permit a reduction of temperature away from the outer surface of pipe or pipe components. In some but not all cases, Codes and standards explicitly address reduction of temperature for applications of utilizing thermal insulation. Additionally, the temperature distribution is established by specific geometrical parameters and their respective equations for employment by the pipe support engineer. These reductions are explored by utilizing fundamentals of heat transfer. Additionally, steady-state and transient thermal Finite Element Analyses (FEA) are used to establish computational models of simple geometric bodies in a range of atmospheric conditions. The effects of insulation on the thermal distribution are also represented through closed form solutions and FEA. The results of these analyses allow for assessment of, and recommendations for, the treatment of temperature reduction in Codes and standards.


Sign in / Sign up

Export Citation Format

Share Document