Empirical Correlation for Estimating Shear-Wave Velocity from Cone Penetration Test Data for Banks Peninsula Loess Soils in Canterbury, New Zealand

2018 ◽  
Vol 144 (9) ◽  
pp. 04018054 ◽  
Author(s):  
Christopher R. McGann ◽  
Brendon A. Bradley ◽  
Seokho Jeong
2015 ◽  
Vol 75 ◽  
pp. 66-75 ◽  
Author(s):  
Christopher R. McGann ◽  
Brendon A. Bradley ◽  
Merrick L. Taylor ◽  
Liam M. Wotherspoon ◽  
Misko Cubrinovski

2010 ◽  
Vol 47 (7) ◽  
pp. 709-718 ◽  
Author(s):  
Michael Long ◽  
Shane Donohue

A database of research-quality piezocone cone penetration test (CPTU) and shear wave velocity, Vs, information for Norwegian marine clays has been assembled to study the small-strain stiffness relationships for these materials and to examine the potential use of CPTU and Vs data in combination for the purposes of characterizing these soils. Data for sites where high-quality block sampling was carried out have mostly been used. Improvements have been suggested to existing correlations between the small-strain shear modulus, Gmax, or Vs and index properties for these soils. Recent research has shown that CPTU corrected cone tip resistance, qt, and especially the pore pressure measured during CPTUs, u2, and Vs can be measured reliably and repeatably and are not operator or equipment dependant. Therefore, a new soil classification chart involving the normalized cone resistance, Qt, and normalized shear wave velocity, Vs1, or Vs1 and Δu/[Formula: see text] (where u is the pore-water pressure and [Formula: see text] is the in situ vertical effective stress) is presented. Using this chart it is possible to clearly distinguish between clays of different overconsolidation ratios (OCRs).


Sign in / Sign up

Export Citation Format

Share Document