shear wave velocity
Recently Published Documents


TOTAL DOCUMENTS

1669
(FIVE YEARS 446)

H-INDEX

58
(FIVE YEARS 7)

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Shindy Rosalia ◽  
Sri Widiyantoro ◽  
Phil R. Cummins ◽  
Tedi Yudistira ◽  
Andri Dian Nugraha ◽  
...  

AbstractThis paper presents the depth inversion of Rayleigh wave group velocity to obtain an S-wave velocity model from seismic ambient noise cross-correlation in western Java, Indonesia. This study utilizes the vertical component data of a temporary seismograph network deployed in 2016, which was used in a previous study to estimate fundamental mode Rayleigh wave group velocity maps. In this study, the Neighborhood Algorithm was applied to invert the Rayleigh wave group velocities into 1D shear-wave velocity (Vs) profiles, which were then interpolated to produce a high-resolution, pseudo-3D Vs model. These tomographic images of Vs extend to ~ 20 km depth and show a pronounced NE-SW contrast of low and high Vs in the depth range 1–5 km that correlates well with the Bouguer anomaly map. We interpret the low Vs in the northeastern part of the study area as associated with alluvial and volcanic products from the Sunda Shelf and modern volcanic arc, whereas the high Vs in the southwestern part is associated with volcanic arc products from earlier episodes of subduction. We also obtained the depth of the northern Java Basin, which is in the range of 5–6 km, and the Garut Basin, which extends to 5 km depth. For greater depths, Vs gradually increases throughout western Java, which reflects the crystalline basement. This study provides estimates of the shallow crustal Vs structure underneath West Java with higher resolution than previous tomographic studies, which could be useful for supporting future earthquake studies in the region.


2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Igor Cezar Kniphoff da Cruz ◽  
Rafael Kretzer Carneiro ◽  
Andrigo Barboza de Nardi ◽  
Ricardo Andrés Ramirez Uscategui ◽  
Eduarda Mazzardo Bortoluzzi ◽  
...  

Abstract Background Cutaneous and subcutaneous neoplasms are highly prevalent in dogs, ranging from benign to highly aggressive and metastatic lesions. The diagnosis is obtained through histopathology, however it is an invasive technique that may take a long time to obtain the result, delaying the beginning of the adequate treatment. Thus, there is a need for non-invasive tests that can help in the early diagnosis of this type of cancer. The aim of this study was to verify the accuracy of B-mode ultrasonography, Doppler, and ARFI elastography to predict malignancy in cutaneous and subcutaneous canine neoplasms. In addition, we aim to propose an ultrasonography evaluation protocol and perform the neoplasms characterization using these three proposed techniques. Results Twenty-one types of specific neoplasm were diagnosed, and using B-mode, we verified the association between heterogeneous echotexture, invasiveness, presence of hyperechoic spots, and cavity areas with malignancy. An increased pulsatility was verified in malignant neoplasms using Doppler (cut-off value > 0.93). When using the elastography, malignancy was associated with non-deformable tissues and shear wave velocity > 3.52 m/s. Evaluation protocols were proposed associating 4, 5, 6, or 7 malignancy predictive characteristics, and characterization was done for all tumors with at least two cases. Conclusions We concluded that ultrasonography methods are promising and effective in predicting malignancy in these types of tumors, and the association of methods can increase the specificity of the results.


Geophysics ◽  
2021 ◽  
pp. 1-57
Author(s):  
Binbin Mi ◽  
Jianghai Xia ◽  
Gang Tian ◽  
Zhanjie Shi ◽  
Huaixue Xing ◽  
...  

Accurate understanding of near-surface structures of the solid Earth is challenging, especially in urban areas where active source seismic surveys are constrained and difficult to perform. The analysis of anthropogenic seismic noise provides an alternative way to image the shallow subsurface in urban environments. We present an application of using traffic noise with seismic interferometry to investigate near-surface structures in Hangzhou City, eastern China. Noise data were recorded by dense linear arrays with approximately 5 m spacing deployed along two crossing roads. We analyze the characteristics of traffic-induced noise using 36 hr continuous recordings. Coherent Rayleigh surface waves between 2 and 20 Hz are retrieved based on crosscorrelations within 1 hr time windows. Robust phase-velocity dispersion curves are extracted from virtual shot gathers using multichannel analysis of surface waves and coincide with the results from active seismic data, noise beamforming analysis, and measurements with the spatial autocorrelation method (SPAC). Shear-wave velocity profiles are derived for the top 100 m of the subsurface at the array locations. The estimated shear-wave velocities from traffic noise correspond to the velocities estimated from logging data. The 2D shear-wave velocity maps reveal different soil deposits and bedrock structures in the estuarine sedimentary area. The results demonstrate the accuracy and efficiency of delineating near-surface structures from traffic-induced noise, which has great potential for monitoring subsurface changes in urban areas.


2021 ◽  
pp. 45-54
Author(s):  
Sonia Akter

Ground motion is the movement of the earth's surface due to explosions or the propagation of seismic waves. In the seismic design process, ground response analysis evaluates the impact of local soil conditions during earthquake shaking. However, it is difficult to determine the dynamic site response of soil deposits in earthquake hazard-prone areas. Structural damage has a great influence on the selection of input ground motion, and in this study, the importance of bedrock motion upon the response of soil is highlighted. The specific site response analysis is assessed through “DEEPSOIl" software with an equivalent linear analysis method. Furthermore, four input motions including Kobe, LomaGilroy, Northridge, and Chi-Chi were selected to obtain normalized response spectra. This study aims to obtain the site amplification of ground motion, peak spectral acceleration (PSA), and maximum peak ground acceleration (PGA) based on shear wave velocity from the detailed site-specific analysis of Bangabandhu Sheikh Mujibor Rahman hall at Khulna University of Engineering & Technology. The maximum shear wave velocity obtained was 205 m/s while the amplification factor varied from 4.01 (Kobe) to 1.8 (Northridge) for rigid bedrock properties. Furthermore, the Kobe earthquake produced the highest (4.3g) PSA and the Northridge earthquake produced the lowest (1.08g) PSA for bedrock, with Vs=205 m/s. The surface PGA values were acquired in the range of 0.254g (Northridge) to 0.722g (Kobe), and the maximum strain values for Kobe earthquakes were in the range of 0.016 to .303. Therefore, the surface acceleration values were very high (>0.12g) for the Kobe earthquake motion.


2021 ◽  
pp. 875529302110569
Author(s):  
Grace A Parker ◽  
Jonathan P Stewart

We present an ergodic site response model with regional adjustments for use with subduction zone ground-motion models. The model predicts site amplification of peak ground acceleration, peak ground velocity, and 5% damped pseudo-spectral accelerations of the orientation-independent horizonal component for oscillator periods from 0.01 to 10 s. The model depends on the time-averaged shear-wave velocity in the upper 30 m ( VS30), basin depth, and region and is independent of subduction earthquake type. It has three components: a linear site-amplification term in the form of VS30-scaling, a nonlinear term that depends on VS30 and shaking intensity parameterized by peak ground acceleration at the reference-rock velocity condition of 760 m/s, and a basin sediment-depth term for Japan and Cascadia conditioned on the depth to the 2.5 km/s shear-wave velocity isosurface ( Z2.5). A global VS30-scaling model is provided along with regional adjustments for Japan, Taiwan, South America, Alaska, and Cascadia. The nonlinear model is global, with a functional form that has often been used to fit nonlinear responses inferred from simulations, but here we calibrate it empirically. Relative to a prior model for shallow earthquakes in active tectonic regions, our subduction zone global VS30-scaling is comparable at short periods (<1.0 s) but weaker at long periods, while the nonlinear site response is generally less pronounced but extends to lower levels of shaking. Basin depth models are conditioned on the difference of the actual Z2.5 and a VS30-conditioned mean Z2.5. Sites with positive differential depths have increased long-period site responses and decreased short-period responses, with the opposite occurring for negative differential depths.


Sign in / Sign up

Export Citation Format

Share Document