Parallel Evolutionary Algorithm for Designing Water Distribution Networks to Minimize Background Leakage

Author(s):  
M. Ehsan Shafiee ◽  
Andrew Berglund ◽  
Emily Zechman Berglund ◽  
E. Downey Brill ◽  
G. Mahinthakumar
Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3101
Author(s):  
Diego Páez ◽  
Camilo Salcedo ◽  
Alexander Garzón ◽  
María Alejandra González ◽  
Juan Saldarriaga

The optimization of water distribution networks (WDN) has evolved, requiring approaches that seek to reduce capital costs and maximize the reliability of the system simultaneously. Hence, several evolutionary algorithms, such as the non-dominated sorting-based multi-objective evolutionary algorithm (NSGA-II), have been widely used despite the high computational costs required to achieve an acceptable solution. Alternatively, energy-based methods have been used to reach near-optimal solutions with reduced computational requirements. This paper presents a method to combine the domain knowledge given by energy-based methods with an evolutionary algorithm, in a way that improves the convergence rate and reduces the overall computational requirements to find near-optimal Pareto fronts (PFs). This method is divided into three steps: parameters calibration, preprocessing of the optimal power use surface (OPUS) results, and periodic feedback using OPUS in NSGA II. The method was tested in four benchmark networks with different characteristics, seeking to minimize the costs of the WDN and maximizing its reliability. Then the results were compared with a generic implementation of NSGA-II, and the performance and quality of the solutions were evaluated using two metrics: hypervolume (HV) and modified inverted generational distance (IGD+). The results showed that the feedback procedure increases the efficiency of the algorithm, particularly the first time the algorithm is retrofitted.


2020 ◽  
Vol 53 (2) ◽  
pp. 16697-16702
Author(s):  
I. Santos-Ruiz ◽  
J. Blesa ◽  
V. Puig ◽  
F.R. López-Estrada

2020 ◽  
Vol 13 (1) ◽  
pp. 31
Author(s):  
Enrico Creaco ◽  
Giacomo Galuppini ◽  
Alberto Campisano ◽  
Marco Franchini

This paper presents a two-step methodology for the stochastic generation of snapshot peak demand scenarios in water distribution networks (WDNs), each of which is based on a single combination of demand values at WDN nodes. The methodology describes the hourly demand at both nodal and WDN scales through a beta probabilistic model, which is flexible enough to suit both small and large demand aggregations in terms of mean, standard deviation, and skewness. The first step of the methodology enables generating separately the peak demand samples at WDN nodes. Then, in the second step, the nodal demand samples are consistently reordered to build snapshot demand scenarios for the WDN, while respecting the rank cross-correlations at lag 0. The applications concerned the one-year long dataset of about 1000 user demand values from the district of Soccavo, Naples (Italy). Best-fit scaling equations were constructed to express the main statistics of peak demand as a function of the average demand value on a long-time horizon, i.e., one year. The results of applications to four case studies proved the methodology effective and robust for various numbers and sizes of users.


2020 ◽  
Vol 53 (2) ◽  
pp. 16691-16696
Author(s):  
Luis Romero ◽  
Joaquim Blesa ◽  
Vicenç Puig ◽  
Gabriela Cembrano ◽  
Carlos Trapiello

Sign in / Sign up

Export Citation Format

Share Document