Risk Perceptions and Adaptation to Climate Change and Sea-Level Rise: Insights from General Public Opinion Survey in Florida

2020 ◽  
Vol 146 (3) ◽  
pp. 04019081
Author(s):  
Abu Hena Mustafa Kamal Sikder ◽  
Pallab Mozumder
Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2151
Author(s):  
Gary Griggs ◽  
Borja G. Reguero

The Earth’s climate is changing; ice sheets and glaciers are melting and coastal hazards and sea level are rising in response. With a total population of over 300 million people situated on coasts, including 20 of the planet’s 33 megacities (over 10 million people), low-lying coastal areas represent one of the most vulnerable areas to the impacts of climate change. Many of the largest cities along the Atlantic coast of the U.S. are already experiencing frequent high tide flooding, and these events will increase in frequency, depth, duration and extent as sea levels continue to rise at an accelerating rate throughout the 21st century and beyond. Cities in southeast Asia and islands in the Indo-Pacific and Caribbean are also suffering the effects of extreme weather events combined with other factors that increase coastal risk. While short-term extreme events such as hurricanes, El Niños and severe storms come and go and will be more damaging in the short term, sea-level rise is a long-term permanent change of state. However, the effects of sea-level rise are compounded with other hazards, such as increased wave action or a loss of ecosystems. As sea-level rise could lead to the displacement of hundreds of millions of people, this may be one of the greatest challenges that human civilization has ever faced, with associated inundation of major cities, loss of coastal infrastructure, increased saltwater intrusion and damage to coastal aquifers among many other global impacts, as well as geopolitical and legal implications. While there are several short-term responses or adaptation options, we need to begin to think longer term for both public infrastructure and private development. This article provides an overview of the status on adaptation to climate change in coastal zones.


The Holocene ◽  
2021 ◽  
pp. 095968362110482
Author(s):  
Kelvin W Ramsey ◽  
Jaime L. Tomlinson ◽  
C. Robin Mattheus

Radiocarbon dates from 176 sites along the Delmarva Peninsula record the timing of deposition and sea-level rise, and non-marine wetland deposition. The dates provide confirmation of the boundaries of the Holocene subepochs (e.g. “early-middle-late” of Walker et al.) in the mid-Atlantic of eastern North America. These data record initial sea-level rise in the early Holocene, followed by a high rate of rise at the transition to the middle Holocene at 8.2 ka, and a leveling off and decrease in the late-Holocene. The dates, coupled to local and regional climate (pollen) records and fluvial activity, allow regional subdivision of the Holocene into six depositional and climate phases. Phase A (>10 ka) is the end of periglacial activity and transition of cold/cool climate to a warmer early Holocene. Phase B (10.2–8.2 ka) records rise of sea level in the region, a transition to Pinus-dominated forest, and decreased non-marine deposition on the uplands. Phase C (8.2–5.6 ka) shows rapid rates of sea-level rise, expansion of estuaries, and a decrease in non-marine deposition with cool and dry climate. Phase D (5.6–4.2 ka) is a time of high rates of sea-level rise, expanding estuaries, and dry and cool climate; the Atlantic shoreline transgressed rapidly and there was little to no deposition on the uplands. Phase E (4.2–1.1 ka) is a time of lowering sea-level rise rates, Atlantic shorelines nearing their present position, and marine shoal deposition; widespread non-marine deposition resumed with a wetter and warmer climate. Phase F (1.1 ka-present) incorporates the Medieval Climate Anomaly and European settlement on the Delmarva Peninsula. Chronology of depositional phases and coastal changes related to sea-level rise is useful for archeological studies of human occupation in relation to climate change in eastern North America, and provides an important dataset for future regional and global sea-level reconstructions.


2017 ◽  
Vol 50 (5) ◽  
pp. 483-511 ◽  
Author(s):  
David P. Retchless

Audiences that view sea level rise as a distant hazard or hold doubtful or dismissive beliefs about climate change in general may not be receptive to information about this hazard. This study explores how maps may address these challenges to sea level rise communication by making visible the impacts of sea level rise on local communities. Using an interactive map of sea level rise in Sarasota, Florida and an accompanying online survey, it considers how college students from nearby and far away from Sarasota, and with different views about climate change, vary in their risk perceptions. Results show that, consistent with spatial optimism bias, risk perceptions increased more from pre- to post map for respondents far away from Sarasota than for those nearby, while respondents who were initially doubtful or cautious about climate change showed larger increases in risk perceptions than those who were disengaged or alarmed.


Sign in / Sign up

Export Citation Format

Share Document