scholarly journals Coastal Adaptation to Climate Change and Sea-Level Rise

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2151
Author(s):  
Gary Griggs ◽  
Borja G. Reguero

The Earth’s climate is changing; ice sheets and glaciers are melting and coastal hazards and sea level are rising in response. With a total population of over 300 million people situated on coasts, including 20 of the planet’s 33 megacities (over 10 million people), low-lying coastal areas represent one of the most vulnerable areas to the impacts of climate change. Many of the largest cities along the Atlantic coast of the U.S. are already experiencing frequent high tide flooding, and these events will increase in frequency, depth, duration and extent as sea levels continue to rise at an accelerating rate throughout the 21st century and beyond. Cities in southeast Asia and islands in the Indo-Pacific and Caribbean are also suffering the effects of extreme weather events combined with other factors that increase coastal risk. While short-term extreme events such as hurricanes, El Niños and severe storms come and go and will be more damaging in the short term, sea-level rise is a long-term permanent change of state. However, the effects of sea-level rise are compounded with other hazards, such as increased wave action or a loss of ecosystems. As sea-level rise could lead to the displacement of hundreds of millions of people, this may be one of the greatest challenges that human civilization has ever faced, with associated inundation of major cities, loss of coastal infrastructure, increased saltwater intrusion and damage to coastal aquifers among many other global impacts, as well as geopolitical and legal implications. While there are several short-term responses or adaptation options, we need to begin to think longer term for both public infrastructure and private development. This article provides an overview of the status on adaptation to climate change in coastal zones.

2021 ◽  
Author(s):  
Carmela De Vivo ◽  
Marta Ellena ◽  
Vincenzo Capozzi ◽  
Giorgio Budillon ◽  
Paola Mercogliano

AbstractThe increase of frequency and severity of extreme weather events due to climate change gives evidence of severe challenges faced by infrastructure systems. Among them, the aviation sector is particularly at risk from the potential consequences of climate change. Airports are classified as critical infrastructures because they provide fundamental functions to sustain societies and economic activities. More specifically, Mediterranean airports face risks associated with sea level rise, higher occurrence of extreme temperature and precipitation events. These aspects require the implementation of appropriate risk assessments and definition of targeted adaptation strategies, which are still limited in the Mediterranean region. The aim of the present paper is to provide theoretical frameworks in order to assess risks of climate change on Mediterranean airports, related to extreme temperature, extreme precipitation and sea level rise. Starting from a review of the literature, we first identify the sources of climate risk that may induce potential impacts on airports, here divided in air side and land side components. In order to do so, we select a series of indicators used as proxies for identifying hazard, exposure and vulnerability. The application of these theoretical frameworks allows defining the level of risk associated to each hazard, with the goal to support the identification of specific adaptation measures for the Mediterranean airports.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1142
Author(s):  
Juliano Calil ◽  
Geraldine Fauville ◽  
Anna Carolina Muller Queiroz ◽  
Kelly L. Leo ◽  
Alyssa G. Newton Mann ◽  
...  

As coastal communities around the globe contend with the impacts of climate change including coastal hazards such as sea level rise and more frequent coastal storms, educating stakeholders and the general public has become essential in order to adapt to and mitigate these risks. Communicating SLR and other coastal risks is not a simple task. First, SLR is a phenomenon that is abstract as it is physically distant from many people; second, the rise of the sea is a slow and temporally distant process which makes this issue psychologically distant from our everyday life. Virtual reality (VR) simulations may offer a way to overcome some of these challenges, enabling users to learn key principles related to climate change and coastal risks in an immersive, interactive, and safe learning environment. This article first presents the literature on environmental issues communication and engagement; second, it introduces VR technology evolution and expands the discussion on VR application for environmental literacy. We then provide an account of how three coastal communities have used VR experiences developed by multidisciplinary teams—including residents—to support communication and community outreach focused on SLR and discuss their implications.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Alexis K. Mills ◽  
Peter Ruggiero ◽  
John P. Bolte ◽  
Katherine A. Serafin ◽  
Eva Lipiec

Coastal communities face heightened risk to coastal flooding and erosion hazards due to sea-level rise, changing storminess patterns, and evolving human development pressures. Incorporating uncertainty associated with both climate change and the range of possible adaptation measures is essential for projecting the evolving exposure to coastal flooding and erosion, as well as associated community vulnerability through time. A spatially explicit agent-based modeling platform, that provides a scenario-based framework for examining interactions between human and natural systems across a landscape, was used in Tillamook County, OR (USA) to explore strategies that may reduce exposure to coastal hazards within the context of climate change. Probabilistic simulations of extreme water levels were used to assess the impacts of variable projections of sea-level rise and storminess both as individual climate drivers and under a range of integrated climate change scenarios through the end of the century. Additionally, policy drivers, modeled both as individual management decisions and as policies integrated within adaptation scenarios, captured variability in possible human response to increased hazards risk. The relative contribution of variability and uncertainty from both climate change and policy decisions was quantified using three stakeholder relevant landscape performance metrics related to flooding, erosion, and recreational beach accessibility. In general, policy decisions introduced greater variability and uncertainty to the impacts of coastal hazards than climate change uncertainty. Quantifying uncertainty across a suite of coproduced performance metrics can help determine the relative impact of management decisions on the adaptive capacity of communities under future climate scenarios.


The Holocene ◽  
2021 ◽  
pp. 095968362110482
Author(s):  
Kelvin W Ramsey ◽  
Jaime L. Tomlinson ◽  
C. Robin Mattheus

Radiocarbon dates from 176 sites along the Delmarva Peninsula record the timing of deposition and sea-level rise, and non-marine wetland deposition. The dates provide confirmation of the boundaries of the Holocene subepochs (e.g. “early-middle-late” of Walker et al.) in the mid-Atlantic of eastern North America. These data record initial sea-level rise in the early Holocene, followed by a high rate of rise at the transition to the middle Holocene at 8.2 ka, and a leveling off and decrease in the late-Holocene. The dates, coupled to local and regional climate (pollen) records and fluvial activity, allow regional subdivision of the Holocene into six depositional and climate phases. Phase A (>10 ka) is the end of periglacial activity and transition of cold/cool climate to a warmer early Holocene. Phase B (10.2–8.2 ka) records rise of sea level in the region, a transition to Pinus-dominated forest, and decreased non-marine deposition on the uplands. Phase C (8.2–5.6 ka) shows rapid rates of sea-level rise, expansion of estuaries, and a decrease in non-marine deposition with cool and dry climate. Phase D (5.6–4.2 ka) is a time of high rates of sea-level rise, expanding estuaries, and dry and cool climate; the Atlantic shoreline transgressed rapidly and there was little to no deposition on the uplands. Phase E (4.2–1.1 ka) is a time of lowering sea-level rise rates, Atlantic shorelines nearing their present position, and marine shoal deposition; widespread non-marine deposition resumed with a wetter and warmer climate. Phase F (1.1 ka-present) incorporates the Medieval Climate Anomaly and European settlement on the Delmarva Peninsula. Chronology of depositional phases and coastal changes related to sea-level rise is useful for archeological studies of human occupation in relation to climate change in eastern North America, and provides an important dataset for future regional and global sea-level reconstructions.


Sign in / Sign up

Export Citation Format

Share Document