scholarly journals Beneficial Use Decision Support for Wetlands: Case Study for Mobile Bay, Alabama

2021 ◽  
Vol 147 (5) ◽  
pp. 05021010
Author(s):  
Kyle D. Runion ◽  
Brandon M. Boyd ◽  
Candice D. Piercy ◽  
James T. Morris
Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Gerald Norbert Souza da Silva ◽  
Márcia Maria Guedes Alcoforado de Moraes

The development of adequate modeling at the basin level to establish public policies has an important role in managing water resources. Hydro-economic models can measure the economic effects of structural and non-structural measures, land and water management, ecosystem services and development needs. Motivated by the need of improving water allocation using economic criteria, in this study, a Spatial Decision Support System (SDSS) with a hydro-economic optimization model (HEAL system) was developed and used for the identification and analysis of an optimal economic allocation of water resources in a case study: the sub-middle basin of the São Francisco River in Brazil. The developed SDSS (HEAL system) made the economically optimum allocation available to analyze water allocation conflicts and trade-offs. With the aim of providing a tool for integrated economic-hydrological modeling, not only for researchers but also for decision-makers and stakeholders, the HEAL system can support decision-making on the design of regulatory and economic management instruments in practice. The case study results showed, for example, that the marginal benefit function obtained for inter-basin water transfer, can contribute for supporting the design of water pricing and water transfer decisions, during periods of water scarcity, for the well-being in both basins.


Author(s):  
Niket M. Telang ◽  
Charles M. Minervino ◽  
Paul G. Norton

Elegantly poised over the Mobile River, the twin pylons and the semi-harped cable stays of the Cochrane Bridge subtly complement the vast and undulating landscape of the Mobile Bay as the bridge carries US Route 90 over the Mobile River in Alabama. In February 1998, light rain drizzled on the bridge, and a weather station nearby recorded wind speeds of about 48 km/h (30 mph). Under these seemingly mild weather conditions, the normally immobile cable stays started to vibrate, and within moments, these nascent vibrations reached amplitudes of more than 1.2 m (4 ft). Alarmed by this event, the Alabama Department of Transportation (ALDOT) took immediate action to ensure the continued safety and serviceability of the bridge. A team of consultants was selected by ALDOT to investigate mitigation measures for the large-amplitude cable-stay vibrations. The fast-tracked comprehensive program planned and implemented to inspect, test, document, and evaluate the effects of the large-amplitude vibrations and the recommendation of retrofit measures that would limit future occurrences of such cable-stay vibrations on the Cochrane Bridge are described in detail.


Sign in / Sign up

Export Citation Format

Share Document