light rain
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 81)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Alexander Lilley ◽  
Sarthak Roy ◽  
Lucas Michels ◽  
Subrata Roy

Abstract Plasma actuators have been extensively studied for flow control applications. While these studies have been traditionally focused on characterizing their performances as flow control devices, the performance of plasma actuators under adverse conditions like light rain remains to be less explored. This paper seeks to study the effects of water adhesion from droplets directly sprayed on to a plasma actuator using thrust recovery as the performance metric. It was found in all tests that wet actuators quickly recover plasma glow, before gradually regaining performance comparable to the dry actuator. The measured thrust for the wet actuator after 5 seconds of operation recovered by 46% and 42% of the thrust of the dry actuator for 50.0-62.5 g/m2 and 125-150 g/m2 of sprayed water droplets, respectively. At 22.5 kVpp and 14 kHz, the highest thrust recovery was recorded at 84% of that of the dry actuator after 80 seconds of operation. For 17.5 kVpp and 14 kHz the wet thrust recovered by 79%, while for 22.5 kVpp and 10 kHz the wet thrust recovered by 68% of their dry counterpart in 80 seconds. For 17.5 kVpp and 14 kHz, the thrust almost fully recovered in comparison to the dry actuator after about 290 seconds of operation. These results indicate that both applied voltage and operating frequency plays a critical role in the performance recovery while the latter may have a stronger influence. Performance recovery for a wet serpentine shaped plasma actuator is also included for general applicability. The power data in all cases show that wet actuators consume more power which with time gradually approach the dry actuator power data. This because during the initial stages of operation, the rolling mean current of the wet actuator is higher than the dry actuator even though the ionization spikes of dry actuator is stronger.


2021 ◽  
Vol 14 (12) ◽  
pp. 7681-7691
Author(s):  
Karlie N. Rees ◽  
Timothy J. Garrett

Abstract. Due to the discretized nature of rain, the measurement of a continuous precipitation rate by disdrometers is subject to statistical sampling errors. Here, Monte Carlo simulations are employed to obtain the precision of rain detection and rate as a function of disdrometer collection area and compared with World Meteorological Organization guidelines for a 1 min sample interval and 95 % probability. To meet these requirements, simulations suggest that measurements of light rain with rain rates R ≤ 0.50 mm h−1 require a collection area of at least 6 cm × 6 cm, and for R = 1 mm h−1, the minimum collection area is 13 cm × 13 cm. For R = 0.01 mm h−1, a collection area of 2 cm × 2 cm is sufficient to detect a single drop. Simulations are compared with field measurements using a new hotplate device, the Differential Emissivity Imaging Disdrometer. The field results suggest an even larger plate may be required to meet the stated accuracy, likely in part due to non-Poissonian hydrometeor clustering.


2021 ◽  
Vol 21 (23) ◽  
pp. 17649-17664
Author(s):  
Yang Yi ◽  
Fan Yi ◽  
Fuchao Liu ◽  
Yunpeng Zhang ◽  
Changming Yu ◽  
...  

Abstract. Mid-level stratiform precipitations during the passage of warm fronts were detailedly observed on two occasions (light and moderate rain) by a 355 nm polarization lidar and water vapor Raman lidar, both equipped with waterproof transparent roof windows. The hours-long precipitation streaks shown in the lidar signal (X) and volume depolarization ratio (δv) reveal some ubiquitous features of the microphysical process of precipitating hydrometeors. We find that for the light-rain case precipitation that reaches the surface begins as ice-phase-dominant hydrometeors that fall out of a shallow liquid cloud layer at altitudes above the 0 ∘C isotherm level, and the depolarization ratio magnitude of falling hydrometeors increases from the liquid-water values (δv<0.09) to the ice/snow values (δv>0.20) during the first 100–200 m of their descent. Subsequently, the falling hydrometeors yield a dense layer with an ice/snow bright band occurring above and a liquid-water bright band occurring below (separated by a lidar dark band) as a result of crossing the 0 ∘C level. The ice/snow bright band might be a manifestation of local hydrometeor accumulation. Most falling raindrops shrink or vanish in the liquid-water bright band due to evaporation, whereas a few large raindrops fall out of the layer. We also find that a prominent δv peak (0.10–0.40) always occurs at an altitude of approximately 0.6 km when precipitation reaches the surface, reflecting the collision–coalescence growth of falling large raindrops and their subsequent spontaneous breakup. The microphysical process (at ice-bright-band altitudes and below) of moderate rain resembles that of the light-rain case, but more large-sized hydrometeors are involved.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3381
Author(s):  
Linjiang Nan ◽  
Mingxiang Yang ◽  
Hao Wang ◽  
Zhenglin Xiang ◽  
Shaokui Hao

Due to the difficulty involved in obtaining and processing a large amount of data, the spatial distribution of the quality and error structure of satellite precipitation products and the climatic dependence of the error sources have not been studied sufficiently. Eight statistical and detection indicators were used to compare and evaluate the accuracy of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement Mission (GPM IMERG) precipitation products in China, including IMERG Early, Late, and Final Run. (1) Based on the correlation coefficient between GPM IMERG precipitation products and measured precipitation, the precipitation detection ability is good in eastern China, whereas the root-mean-square error increases from northwest to southeast. (2) Compared with the Early and Late Run, the accuracy of the detection of a light rain of the IMERG Final Run is higher, but the precipitation is overestimated. With the increase in the precipitation intensity, the detection ability weakens, and the precipitation is underestimated. (3) The Final Run has a higher estimation accuracy regarding light rain in western high-altitude areas, whereas the accuracy of the detection of moderate rain, heavy rain, and rainstorms is higher in eastern coastal low-altitude areas. This phenomenon is related to the performance and detection principles of satellites. The altitude and magnitude of the precipitation affect the detection accuracy of the satellite. This study provides guidance for the application of GPM IMERG precipitation products in hydrological research and water resource management in China.


2021 ◽  
Vol 21 (22) ◽  
pp. 16797-16816
Author(s):  
Yong Wang ◽  
Wenwen Xia ◽  
Guang J. Zhang

Abstract. Both frequency and intensity of rainfall affect aerosol wet deposition. With a stochastic deep convection scheme implemented into two state-of-the-art global climate models (GCMs), a recent study found that aerosol burdens are increased globally by reduced climatological mean wet removal of aerosols due to suppressed light rain. Motivated by their work, a novel approach is developed in this study to detect what rainfall rates are most efficient for wet removal (scavenging amount mode) of different aerosol species of different sizes in GCMs and applied to the National Center for Atmospheric Research Community Atmosphere Model version 5 (CAM5) with and without the stochastic convection cases. Results show that in the standard CAM5, no obvious differences in the scavenging amount mode are found among different aerosol types. However, the scavenging amount modes differ in the Aitken, accumulation and coarse modes, showing around 10–12, 8–9 and 7–8 mm d−1, respectively, over the tropics. As latitude increases poleward, the scavenging amount mode in each aerosol mode is decreased substantially. The scavenging amount mode is generally smaller over land than over ocean. With stochastic convection, the scavenging amount mode for all aerosol species in each mode is systematically increased, which is the most prominent along the Intertropical Convergence Zone, exceeding 20 mm d−1 for small particles. The scavenging amount modes in the two cases are both smaller than individual rainfall rates associated with the most accumulated rain (rainfall amount mode), further implying precipitation frequency is more important than precipitation intensity for aerosol wet removal. The notion of the scavenging amount mode can be applied to other GCMs to better understand the relation between rainfall and aerosol wet scavenging, which is important to better simulate aerosols.


2021 ◽  
Vol 1192 (1) ◽  
pp. 012010
Author(s):  
P Wullandari ◽  
B B Sedayu

Abstract Research on performance test of a solar-powered ice maker machine has been conducted in Bantul, Yogyakarta. This study aimed to observe the correlation between intensity of sunlight to the power battery capacity rates generated from solar panels in regard with the performance of ice maker machine. The testing was conducted during various weather conditions i.e. sunny, cloudy and light rain. The type of ice maker observed was a flake ice maker machine with specifications of the production capacity of 105 - 120 kgs/day, producing flake ice with dimensions of 2 x 3 x 3 mm3. The energy of the machine was generated by nine solar panels with maximum power of 200 Wp (watt peak) per panel. A set of three panels was arranged in series, it was then coupled to other sets in parallel. The results showed that the power battery capacity was in corresponded to the sunlight intensity during sunny weather with the correlation: y = 0.009x - 26.08, while during cloudy dan raining conditions, the power capacity rates of the battery showed a declining with the correlation: y = 0.008x - 23.92 and y = 0.007x + 69.41, respectively. The ice production capacity during sunny, cloudy and light rainy weathers were 4.34 kg ice/hour; 4.63 kg ice / hour and 4.17 kg ice / hour respectively. Input power from solar panels depends on the intensity of sunlight. The ice produced by ice makers in cloudy weather conditions is much greater than the ice produced during sunny or rainy weather conditions.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6854
Author(s):  
Aya Dernayka ◽  
Michel-Ange Amorim ◽  
Roger Leroux ◽  
Lucas Bogaert ◽  
René Farcy

We present a protocol for evaluating the efficiency of an electronic white cane for improving the mobility of blind people. The electronic cane used during the test is the Tom Pouce III, made of LIDAR sensors (light detection and ranging) with tactile feedback. The protocol comprises two parts. The first part, the “detection test”, evaluates the efficiency of the sensors in the Tom Pouce III for detecting the obstacles found in everyday life (thin and large poles, apertures) under different environmental conditions (darkness, sun light, rain). The second part of the test, the “mobility test”, compares the ability of blind participants to cross a 25 m path by avoiding obstacles with the simple white cane and the electronic cane. The 12 blind participants had between 2 and 20 years of experience of everyday usage of Tom Pouce devices. The results show a significant improvement in the capacity to avoid obstacles with the electronic cane relative to the simple white cane, and there was no speed difference. There was no correlation between the results and the years of experience of the users.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dajun Zhao ◽  
Lianshou Chen ◽  
Yubin Yu

Strong earthquakes are a major cause of natural disasters and may also be related to heavy rainfall events. Both phenomena have received considerable attention in seismology and meteorology, two relatively independent disciplines, but we do not yet know whether there is a connection between them. We investigated the characteristics of daily rainfall over seismic areas in China. Our statistical analyses showed that there is a strong correlation between strong earthquakes (Ms ≥ 6.0) and rainfall over the seismic area, with 74.9% of earthquakes in China accompanied by seismic epicenter rainfall and 86.6% by seismic area rainfall. The statistics also showed that the daily precipitation over the seismic area, including the epicenter, was mainly light rain, with only a few instances of torrential or storm rain, with 80% of the rainfall events lasting two or more days. The maximum cumulative precipitation corresponded well with the strong earthquakes occurring over steep terrain, such as the Taiwan central mountains and the eastern Tibetan Plateau. The earthquake area rainfall had a higher frequency than the 30-years climatological average and was dominated by earthquake events in the wet season. The WRF-ARW numerical simulation of seismic local rainfall during the devastating Ms 8.0 Wenchuan earthquake in May 2008 showed that the geothermal heat from the earthquake strengthened the local convergence of moisture and vertical motion near the epicenter and the upward transport of the sensible heat flux, which favored seismic rainfall. The results of this study show that rainfall in the seismic area is closely related to strong earthquakes and can be triggered and enhanced by geothermal heat.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Meenu ◽  
Anshu Sharma ◽  
Rahul Malhotra

Abstract In this work, a free-space optical (FSO) communication system with the integration of mode division multiplexing and circular polarization shift keying (CpolSK) is proposed at 2 × 40 Gbps using LG00 and LG01 modes. Effects of diverse weather conditions such as clear weather, light rain, moderate rain, heavy rain, thin fog, thick fog, and heavy fog are studied on system performance. Further, a detailed comparison of CpolSK and polarization shift keying (PolSK) is performed at different FSO lengths in terms of log bit error rate. For implementation, analysis, and comparison, Optiwave Optisystem software is used and results show that CpolSK covers 100 km link distance and PolSK limits to 90 km only. Also, LG00 mode performs better than LG01 mode under all weather instabilities in the proposed system.


Author(s):  
Na Wei ◽  
Ninglian Wang ◽  
Yu rong zheng

With global warming and rapid urbanization, urban agglomerations over the Loess Plateau (LP) are suffering from various urban disasters. Urbanization has aggravated the decreasing trends of extreme precipitation in Taiyuan and Xi’an urban agglomerations (UAs) and enhanced the increasing trends of extreme precipitation in Luoyang, Hohhot and Xining UAs during 1979–2018. Meanwhile, the number of light rain days decreases in almost all the cities, indicating the sensitivity of light rain days to urbanization. The climate change is a primary contributor to the change of urban precipitation during 1980–2000. However, the urbanization contribution has been increasing gradually since 2000, and the urbanization further amplifies the trend of extreme precipitation caused by the climate change. In terms of the physical mechanisms, the rapid increasing surface temperature and aerosol particles are closely related to the urban precipitation. Our findings provide a systematic understanding of the urbanization effects on the extreme precipitation over the LP and may play an important role in the mitigation of urban disasters.


Sign in / Sign up

Export Citation Format

Share Document