water transfer
Recently Published Documents


TOTAL DOCUMENTS

1140
(FIVE YEARS 271)

H-INDEX

47
(FIVE YEARS 8)

2022 ◽  
Vol 114 ◽  
pp. 105900
Author(s):  
Anna Erwin ◽  
Zhao Ma ◽  
Ruxandra Popovici ◽  
Emma Patricia Salas O’Brien ◽  
Laura Zanotti ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 256
Author(s):  
Yue Wang ◽  
Jianjun Cao ◽  
Yongjuan Liu ◽  
Ying Zhu ◽  
Xuan Fang ◽  
...  

The South-to-North Water Transfer Jiangsu Water Supply Area (JWSA) is a mega inter-basin water transfer area (water source) that provides water resources from JiangHuai, combines drainage and flooding management, and regulates nearby rivers and lakes. Analyzing the spatiotemporal soil moisture dynamics in the area will be informative regarding agricultural drought along with flood disaster assessment and will provide early warning studies. Therefore, we evaluated the quality of European Space Agency Climate Change Initiative Soil Moisture (ESA CCI_SM) data in the South-North Water Transfer JWSA. Furthermore, we utilized ensemble empirical modal decomposition, Mann-Kendall tests, and regression analysis to study the spatiotemporal variation in soil moisture for the past 29 years. The CCI _SM data displayed a high correlation with local soil measurements at nine sites. We next analyzed the CCI_SM data from three pumping stations (the Gaogang, Hongze, and Liushan stations) in the South-North Water Transfer JWSA. These stations had similar periodic characteristics of soil moisture, with significant periodic fluctuations around 3.1 d. The overall soil moisture at the three typical pumping stations demonstrated an increasing trend. We further investigated whether abrupt soil moisture changes existed at each station or not. The spatial distribution of soil moisture in the South-North Water Transfer JWSA was characterized as “dry north and wet south”, with higher soil moisture in winter, followed by autumn, and low soil moisture in spring and summer. Although the linear trend of soil moisture in the South-North Water Transfer JWSA varied in significance, the overall soil moisture in the JWSA has increased over the past 29 years. The areas with significantly enhanced soil moisture are mostly distributed in the Yangzhou and Huai’an areas in the southeastern part of the study area. The areas with significantly decreased soil moisture are small in size and mostly located in northern Xuzhou.


2022 ◽  
Vol 463 ◽  
pp. 109814
Author(s):  
Rui Xia ◽  
Lei Zou ◽  
Yuan Zhang ◽  
Yongyong Zhang ◽  
Yan Chen ◽  
...  

2022 ◽  
pp. 1-1
Author(s):  
Hongfei Wang ◽  
Jingjing Wang ◽  
Da Chen ◽  
Song Ge ◽  
Yijian Liu ◽  
...  

Author(s):  
Edward Rollason ◽  
Pammi Sinha ◽  
Louise J Bracken

Water scarcity is a global issue, affecting in excess of four billion people. Interbasin Water Transfer (IBWT) is an established method for increasing water supply by transferring excess water from one catchment to another, water-scarce catchment. The implementation of IBWT peaked in the 1980s and was accompanied by a robust academic debate of its impacts. A recent resurgence in the popularity of IBWT, and particularly the promotion of mega-scale schemes, warrants revisiting this technology. This paper provides an updated review, building on previously published work, but also incorporates learning from schemes developed since the 1980s. We examine the spatial and temporal distribution of schemes and their drivers, review the arguments for and against the implementation of IBWT schemes and examine conceptual models for assessing IBWT schemes. Our analysis suggests that IBWT is growing in popularity as a supply-side solution for water scarcity and is likely to represent a key tool for water managers into the future. However, we argue that IBWT cannot continue to be delivered through current approaches, which prioritise water-centric policies and practices at the expense of social and environmental concerns. We critically examine the Socio-Ecological Systems and Water-Energy-Food (WEF) Nexus models as new conceptual models for conceptualising and assessing IBWT. We conclude that neither model offers a comprehensive solution. Instead, we propose an enhanced WEF model (eWEF) to facilitate a more holistic assessment of how these mega-scale engineering interventions are integrated into water management strategies. The proposed model will help water managers, decision-makers, IBWT funders and communities create more sustainable IBWT schemes.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3596
Author(s):  
Hua Wang ◽  
Zilin Shen ◽  
Yichuan Zeng ◽  
Huaiyu Yan ◽  
Yiping Li ◽  
...  

The increase in the rate of water renewal driven by hydrodynamics contributes to improving the water quality of the plain river network. Taking the lakeside river network in Wuxi as an example, through numerical simulation, polynomial fitting, correlation analysis, and principal component analysis, the hydrodynamic responses of urban lake-connected river networks to water diversion and hydrodynamic grouping were researched. Based on numerical model and influence weight analysis, we explored the improvement of hydrodynamic conditions of plain river network with strong human intervention and high algal water diversion. The results showed that: (1) The relationship between water diversion impact on river network flow velocity and water diversion flux was not as simple a linear relationship. It could be reflected by polynomial. The water transfer interval in dry season with high hydrodynamic efficiency (HE) was lower than 10 m3/s and higher than 30 m3/s, and the HE increased significantly when the water transfer flow was higher than 20 m3/s in the wet season. (2) According to the main hydrodynamic driving factors, the channels in the river network could be divided into three types: water conservancy projects, river and lake water level difference, and river channel characteristic. The correlations of rivers’ flow velocity in each group were very high. (3) The influence weights of water conservancy projects, river and lake water level difference, and river channel characteristic on the whole river network dynamics were 65, 21, and 12.4%, respectively, and the other factors contributed 1.6% of the weight.


2021 ◽  
Vol 13 (24) ◽  
pp. 13600
Author(s):  
Yan Long ◽  
Youming Li ◽  
Xiaohui Lei ◽  
Yikai Hou ◽  
Shuang Guo ◽  
...  

The implementation of water diversion projects will exert different influences on upstream water offering areas and the downstream water receiving areas. In order to effectively promote the coordinated development of the two regions, a comprehensive evaluation system for the coordinated development of water transfer projects has been proposed with the Middle Route of the South-to-North Water Transfer Project as the research object. The system conducts a multidimensional evaluation of social development, economic development, and ecological environmental impact, and builds a comprehensive evaluation index system with fifteen evaluation indexes at three levels, with the indexes weighted through the comprehensive weighting method based on the combination of the G1 method and the entropy weight method. Based on the degree of coordinated development among various systems, the coordinated development of the Middle Route of the South–North Water Transfer Project is graded through a comprehensive evaluation. This method is tested in the decision support system of the Middle Route Construction and Administration Bureau, China. The results show that: (1) The coupling coordination degree value of the middle route of the South-to-North Water Diversion Project is 0.8912, which shows that the regional development of the water transfer project is high coupled coordination. (2) The coordination between the economic system and the ecological environment system is weaker than the coordination between the economic system and the social service system, and the coordination between the ecological and social services is the best. Finally, based on an advanced SWOT analysis of the future development of the middle route of the South-to-North Water Diversion Project, effective suggestions for regional development are provided. It provides reference or guidance for the competent authority to manage the water diversion project and the central government to comprehensively evaluate the effectiveness of the water diversion project.


Author(s):  
Yue Wang ◽  
Jianjun Cao ◽  
Yongjuan Liu ◽  
Ying Zhu ◽  
xuan Fang ◽  
...  

The South-to-North Water Transfer Jiangsu Water Supply Area (JWSA) is a mega inter-basin water transfer area (water source) that provides water resources from JiangHuai, combines drainage and flooding management, and regulates nearby rivers and lakes. Analyzing the spatiotemporal soil moisture dynamics in the area will inform agricultural drought and flood disaster assessment and early warning studies. Therefore, we evaluated the quality of European Space Agency Climate Change Initiative Soil moisture (ESA CCI_SM) data in the South-North Water Transfer JWSA. Then, we used ensemble empirical modal decomposition, Mann-Kendall tests, and regression analysis to study the spatiotemporal variation in soil moisture for the past 29 years. The CCI _SM data showed a high correlation with local soil measurements at nine sites. We then analyzed the CCI_SM data from three pumping stations (the Gaogang, Hongze, and Liushan stations) in the South-North Water Transfer JWSA. These stations had similar periodic characteristics of soil moisture, with significant periodic fluctuations around 3.1 d. The overall soil moisture at the three typical pumping stations showed an increasing trend. We then investigated whether there were abrupt soil moisture changes at each station. The spatial distribution of soil moisture in the South-North Water Transfer JWSA was characterized by “dry north and wet south”, with higher soil moisture in winter, followed by autumn, and low soil moisture in spring and summer. Although the linear trend of soil moisture in the South-North Water Transfer JWSA varied in significance, the overall soil moisture in the JWSA has increased over the past 29 years. The areas with significantly enhanced soil moisture are mainly distributed in the Yangzhou and Huai'an areas in the southeastern part of the study area. The areas with significantly decreased soil moisture are small in size and mainly located in northern Xuzhou.


Sign in / Sign up

Export Citation Format

Share Document