Value of Historical Flood Information in Partial Duration Series and Annual Maximum Series Frameworks

2000 ◽  
Author(s):  
Eduardo S. P. R. Martins ◽  
Jery R. Stedinger
2014 ◽  
Vol 18 (11) ◽  
pp. 4391-4401 ◽  
Author(s):  
J. L. Salinas ◽  
A. Castellarin ◽  
S. Kohnová ◽  
T. R. Kjeldsen

Abstract. This study aims to better understand the effect of catchment scale and climate on the statistical properties of regional flood frequency distributions. A database of L-moment ratios of annual maximum series (AMS) of peak discharges from Austria, Italy and Slovakia, involving a total of 813 catchments with more than 25 yr of record length is presented, together with mean annual precipitation (MAP) and basin area as catchment descriptors surrogates of climate and scale controls. A purely data-based investigation performed on the database shows that the generalized extreme value (GEV) distribution provides a better representation of the averaged sample L-moment ratios compared to the other distributions considered, for catchments with medium to higher values of MAP independently of catchment area, while the three-parameter lognormal distribution is probably a more appropriate choice for drier (lower MAP) intermediate-sized catchments, which presented higher skewness values. Sample L-moment ratios do not follow systematically any of the theoretical two-parameter distributions. In particular, the averaged values of L-coefficient of skewness (L-Cs) are always larger than Gumbel's fixed L-Cs. The results presented in this paper contribute to the progress in defining a set of "process-driven" pan-European flood frequency distributions and to assess possible effects of environmental change on its properties.


2018 ◽  
Vol 23 (12) ◽  
pp. 04018051 ◽  
Author(s):  
Sandra Vrban ◽  
Yi Wang ◽  
Edward A. McBean ◽  
Andrew Binns ◽  
Bahram Gharabaghi

Sign in / Sign up

Export Citation Format

Share Document