catchment scale
Recently Published Documents


TOTAL DOCUMENTS

1677
(FIVE YEARS 597)

H-INDEX

76
(FIVE YEARS 10)

2022 ◽  
Vol 806 ◽  
pp. 150281
Author(s):  
Shihui Wang ◽  
Yukun Ma ◽  
Xiaoyue Zhang ◽  
Zhenyao Shen

2022 ◽  
Author(s):  
Jesus Alberto Casillas-Trasvina ◽  
Bart Rogiers ◽  
Koen Beerten ◽  
Laurent Wouters ◽  
Kristine Walraevens

Abstract. Heat is a naturally occurring widespread groundwater tracer that can be used to identify flow patterns in groundwater systems. Temperature measurements, being relatively inexpensive and effortless to gather, represent a valuable source of information which can be exploited to reduce uncertainties on groundwater flow, and e.g. support performance assessment studies on waste disposal sites. In a lowland setting, however, hydraulic gradients are typically small, and whether temperature measurements can be used to inform us about catchment-scale groundwater flow remains an open question. For the Neogene aquifer in Flanders, groundwater flow and solute transport models have been developed in the framework of safety and feasibility studies for the underlying Boom Clay Formation as potential host rock for geological disposal of radioactive waste. However, the simulated fluxes by these models are still subject to large uncertainties, as they are typically constrained by hydraulic heads only. In the current study we use a state-of-the-art 3D steady-state groundwater flow model, calibrated against hydraulic head measurements, to build a 3D transient heat-transport model, for assessing the use of heat as an additional state variable, in a lowland setting, at the catchment scale. We therefore use temperature-depth (TD) profiles as additional state variable observations for inverse conditioning. Furthermore, a Holocene paleo-temperature time curve was constructed based on paleo-temperature reconstructions in Europe from several sources in combination with land-surface temperature (LST) imagery remote sensing monthly data from 2001 to 2019 (retrieved from NASA’s MODIS). The aim of the research is to understand the mechanisms of heat transport and to characterize the temperature distribution and dynamics in the Neogene aquifer. The simulation results clearly underline advection/convection and conduction as the major heat transport mechanisms, with a reduced role of advection/convection in zones where flux magnitudes are low, which suggests temperature is a useful indicator also in a lowland setting. Furthermore, performed scenarios highlight the important roles of i) surface hydrological features and withdrawals driving local groundwater flow systems, and ii) the inclusion of subsurface features like faults in the conceptualization and development of hydrogeological investigations. These findings serve as a proxy of the influence of advective transport and barrier/conduit role of faults, particularly the Rauw Fault in this case, and suggest that solutes released from the Boom Clay might be affected in similar ways.


2022 ◽  
Vol 26 (1) ◽  
pp. 35-54
Author(s):  
Fanny Lehmann ◽  
Bramha Dutt Vishwakarma ◽  
Jonathan Bamber

Abstract. The water budget equation describes the exchange of water between the land, ocean, and atmosphere. Being able to adequately close the water budget gives confidence in our ability to model and/or observe the spatio-temporal variations in the water cycle and its components. Due to advances in observation techniques, satellite sensors, and modelling, a number of data products are available that represent the components of water budget in both space and time. Despite these advances, closure of the water budget at the global scale has been elusive. In this study, we attempt to close the global water budget using precipitation, evapotranspiration, and runoff data at the catchment scale. The large number of recent state-of-the-art datasets provides a new evaluation of well-used datasets. These estimates are compared to terrestrial water storage (TWS) changes as measured by the Gravity Recovery And Climate Experiment (GRACE) satellite mission. We investigated 189 river basins covering more than 90 % of the continental land area. TWS changes derived from the water balance equation were compared against GRACE data using two metrics: the Nash–Sutcliffe efficiency (NSE) and the cyclostationary NSE. These metrics were used to assess the performance of more than 1600 combinations of the various datasets considered. We found a positive NSE and cyclostationary NSE in 99 % and 62 % of the basins examined respectively. This means that TWS changes reconstructed from the water balance equation were more accurate than the long-term (NSE) and monthly (cyclostationary NSE) mean of GRACE time series in the corresponding basins. By analysing different combinations of the datasets that make up the water balance, we identified data products that performed well in certain regions based on, for example, climatic zone. We identified that some of the good results were obtained due to the cancellation of errors in poor estimates of water budget components. Therefore, we used coefficients of variation to determine the relative quality of a data product, which helped us to identify bad combinations giving us good results. In general, water budget components from ERA5-Land and the Catchment Land Surface Model (CLSM) performed better than other products for most climatic zones. Conversely, the latest version of CLSM, v2.2, performed poorly for evapotranspiration in snow-dominated catchments compared, for example, with its predecessor and other datasets available. Thus, the nature of the catchment dynamics and balance between components affects the optimum combination of datasets. For regional studies, the combination of datasets that provides the most realistic TWS for a basin will depend on its climatic conditions and factors that cannot be determined a priori. We believe that the results of this study provide a road map for studying the water budget at catchment scale.


2021 ◽  
Vol 66 (3) ◽  
pp. 35-46
Author(s):  
Urszula Somorowska

Accurate quantification of evapotranspiration is necessary for understanding the water cycle at a local scale. At catchment scale, evapotranspiration might be approximated using remote sensing data useful in spatialtemporal analyses. In this study, the long-term and seasonal variability of evapotranspiration in the Łasica River catchment in the years 2003–2020 was assessed on the basis of data acquired from the SSEBop project (Operational Simplified Surface Energy Balance). Additionally, using the index of precipitation utilization (WWO), the degree of precipitation consumption for the water demands of plants was determined. The highest evapotranspiration occurs in forest areas, slightly lower in marshy belts covered with meadow vegetation, and the lowest in agricultural areas and anthropogenically transformed areas. The spatial differentiation of evapotranspiration is particularly marked during the growing season, from April to October. Mean annual evapotranspiration sum is 403 mm, of which 96% falls on the growing season. Extremely low annual ET sums occurred in 2015 (329 mm), 2019 (342 mm) and 2003 (384 mm), while particularly high – in 2010 (455 mm) and 2013 (447 mm). In dry years, WWO is even 71–77%, while in particularly wet years, WWO is much lower and amounts to 54–58%.


Author(s):  
Alex Colyer ◽  
Adrian Butler ◽  
Denis Peach ◽  
Andrew Hughes

AbstractA novel investigation of the impact of meteorological and geological heterogeneity within the Permo-Triassic Sandstone aquifers of the River Eden catchment, Cumbria (UK), is described. Quantifying the impact of heterogeneity on the water cycle is increasingly important to sustainably manage water resources and minimise flood risk. Traditional investigations on heterogeneity at the catchment scale require a considerable amount of data, and this has led to the analysis of available time series to interpret the impact of heterogeneity. The current research integrated groundwater-level and meteorological time series in conjunction with aquifer property data at 11 borehole locations to quantify the impact of heterogeneity and inform the hydrogeological conceptual understanding. The study visually categorised and used seasonal trend decomposition by LOESS (STL) on 11 groundwater and meteorological time series. Decomposition components of the different time series were compared using variance ratios. Though the Eden catchment exhibits highly heterogeneous rainfall distribution, comparative analysis at borehole locations showed that (1) meteorological drivers at borehole locations are broadly homogeneous and (2) the meteorological drivers are not sufficient to generate the variation observed in the groundwater-level time series. Three distinct hydrogeological regimes were identified and shown to coincide with heterogeneous features in the southern Brockram facies, which is the northern silicified region of the Penrith Sandstone and the St Bees Sandstone. The use of STL analysis in combination with detailed aquifer property data is a low-impact insightful investigative tool that helps guide the development of hydrogeological conceptual models.


2021 ◽  
Author(s):  
Maik Heistermann ◽  
Heye Bogena ◽  
Till Francke ◽  
Andreas Güntner ◽  
Jannis Jakobi ◽  
...  

Abstract. Cosmic Ray Neutron Sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of meters and a depth of decimeters. Recent studies proposed to operate CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale, and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation), and features a topographically distinct watershed. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published dataset (available at https://doi.org/10.23728/b2share.afb20a34a6ac429ca6b759238d842765) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land-atmosphere exchange as well as hydrological and hydrogeological processes at the hill-slope and the catchment scale; and to support the retrieval soil water content from airborne and spaceborne remote sensing platforms.


2021 ◽  
Author(s):  
Emilie Rouzies ◽  
Claire Lauvernet ◽  
Bruno Sudret ◽  
Arthur Vidard

Abstract. Pesticide transfers in agricultural catchments are responsible for diffuse but major risks to water quality. Spatialized pesticide transfer models are useful tools to assess the impact of the structure of the landscape on water quality. Before considering using these tools in operational contexts, quantifying their uncertainties is a preliminary necessary step. In this study, we explored how global sensitivity analysis can be applied to the recent PESHMELBA pesticide transfer model to quantify uncertainties on transfer simulations. We set up a virtual catchment based on a real one and we compared different approaches for sensitivity analysis that could handle the specificities of the model: high number of input parameters, limited size of sample due to computational cost and spatialized output. We compared Sobol' indices obtained from Polynomial Chaos Expansion, HSIC dependence measures and feature importance measures obtained from Random Forest surrogate model. Results showed the consistency of the different methods and they highlighted the relevance of Sobol' indices to capture interactions between parameters. Sensitivity indices were first computed for each landscape element (site sensitivity indices). Second, we proposed to aggregate them at the hillslope and the catchment scale in order to get a summary of the model sensitivity and a valuable insight into the model hydrodynamical behaviour. The methodology proposed in this paper may be extended to other modular and distributed hydrological models as there has been a growing interest in these methods in recent years.


One Ecosystem ◽  
2021 ◽  
Vol 6 ◽  
Author(s):  
Catherine Farrell ◽  
Lisa Coleman ◽  
Daniel Norton ◽  
Mary Kelly-Quinn ◽  
Carl Obst ◽  
...  

The United Nations System of Environmental and Economic Accounting - Ecosystem Accounting (SEEA EA) is a geospatial approach, whereby existing data on ecosystem stocks and flows are collated to show changes over time. The framework has been proposed as a means to track and monitor ecosystem restoration targets across the EU. Condition is a key consideration in the conservation assessment of habitats protected under the EU Habitats Directive and ecosystem condition accounts are also integral to the SEEA EA. While SEEA EA accounts have been developed at EU level for an array for ecosystem types, condition accounts remain the least developed. Collating available datasets under the SEEA EA framework, we developed extent and rudimentary condition accounts for peatland ecosystems at catchment scale in Ireland. Information relating to peatland ecosystem sub-types or habitat types was collated for peatland habitats listed under Annex I of the EU Habitats Directive, as well as degraded peatlands not included in EU nature conservation networks. While data relating to peatland condition were limited, understanding changes in ecosystem extent and incorporating knowledge of habitat types and degradation served as a proxy for ecosystem condition in the absence of more comprehensive data. This highlighted the importance of the ecosystem extent account, which underpins all other accounts in the SEEA EA framework. Reflecting findings at EU level, drainage, disturbance and land conversion were identified as the main pressures affecting peatland condition. We highlighted a number of options to gather data to build more robust, time-series extent and condition accounts for peatlands at varying accounting scales. Overall, despite the absence of comprehensive data, bringing information under the SEEA EA framework is considered a good starting point, with the integration of expert ecological opinion considered essential to ensure development of reliable accounts, particularly when working at ecosystem sub-type (habitat type) and catchment scale.


Sign in / Sign up

Export Citation Format

Share Document