Study on the Analytic Solution of Two-Dimensional Transient Heat Conduction

2016 ◽  
Author(s):  
Youzhen Yang ◽  
Hu Wang ◽  
Hailong Ma ◽  
Wenguo Ma ◽  
Shenhu Ding ◽  
...  
Author(s):  
Ganesh Hegde ◽  
Madhu Gattumane

Improvement in accuracy without sacrificing stability and convergence of the solution to unsteady diffusion heat transfer problems by computational method of enhanced explicit scheme (EES), has been achieved and demonstrated, through transient one dimensional and two dimensional heat conduction. The truncation error induced in the explicit scheme using finite difference technique is eliminated by optimization of partial derivatives in the Taylor series expansion, by application of interface theory developed by the authors. This theory, in its simple terms gives the optimum values to the decision vectors in a redundant linear equation. The time derivatives and the spatial partial derivatives in the transient heat conduction, take the values depending on the time step chosen and grid size assumed. The time correction factor and the space correction factor defined by step sizes govern the accuracy, stability and convergence of EES. The comparison of the results of EES with analytical results, show decreased error as compared to the result of explicit scheme. The paper has an objective of reducing error in the explicit scheme by elimination of truncation error introduced by neglecting the higher order terms in the expansion of the governing function. As the pilot examples of the exercise, the implementation is aimed at solving one-dimensional and two-dimensional problems of transient heat conduction and compared with the results cited in the referred literature.


2000 ◽  
Vol 28 (2) ◽  
pp. 113-139 ◽  
Author(s):  
Esmail M. A. Mokheimer ◽  
Mohamed A. Antar

Detailed methodology and different techniques for simply utilizing the widely available and user friendly spreadsheet programs in heat conduction analysis are presented. Evaluation of analytical and numerical solution of heat conduction problems via spreadsheets is investigated. Detailed techniques of obtaining spreadsheet numerical solutions for one- and two-dimensional steady and transient heat conduction problems are introduced. A new technique of marching the transient numerical solution with time, in a single layer spreadsheet, for one- and two-dimensional heat conduction is explained. Creating macros that automate the spreadsheet processes, particularly calculations, is detailed. Utilization of the powerful graphical facility that is built in the spreadsheets to graphically represent the obtained solutions is outlined.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Robert L. McMasters ◽  
Filippo de Monte ◽  
James V. Beck

A generalized solution for a two-dimensional (2D) transient heat conduction problem with a partial-heating boundary condition in rectangular coordinates is developed. The solution accommodates three kinds of boundary conditions: prescribed temperature, prescribed heat flux and convective. Also, the possibility of combining prescribed heat flux and convective heating/cooling on the same boundary is addressed. The means of dealing with these conditions involves adjusting the convection coefficient. Large convective coefficients such as 1010 effectively produce a prescribed-temperature boundary condition and small ones such as 10−10 produce an insulated boundary condition. This paper also presents three different methods to develop the computationally difficult steady-state component of the solution, as separation of variables (SOV) can be less efficient at the heated surface and another method (non-SOV) is more efficient there. Then, the use of the complementary transient part of the solution at early times is presented as a unique way to compute the steady-state solution. The solution method builds upon previous work done in generating analytical solutions in 2D problems with partial heating. But the generalized solution proposed here contains the possibility of hundreds or even thousands of individual solutions. An indexed numbering system is used in order to highlight these individual solutions. Heating along a variable length on the nonhomogeneous boundary is featured as part of the geometry and examples of the solution output are included in the results.


Sign in / Sign up

Export Citation Format

Share Document