Adaptive Hermite Distribution Model with Probability-Weighted Moments for Seismic Reliability Analysis of Nonlinear Structures

Author(s):  
Jun Xu ◽  
Chen Ding
2011 ◽  
Vol 462-463 ◽  
pp. 1164-1169
Author(s):  
Jing Xiang Yang ◽  
Ya Xin Zhang ◽  
Mamtimin Gheni ◽  
Ping Ping Chang ◽  
Kai Yin Chen ◽  
...  

In this paper, strength evaluations and reliability analysis are conducted for different types of PSSS(Periodically Symmetric Struts Supports) based on the FEA(Finite Element Analysis). The numerical models are established at first, and the PMA(Prestressed Modal Analysis) is conducted. The nodal stress value of all of the gauss points in elements are extracted out and the stress distributions are evaluated for each type of PSSS. Then using nonlinear least squares method, curve fitting is carried out, and the stress probability distribution function is obtained. The results show that although using different number of struts, the stress distribution function obeys the exponential distribution. By using nonlinear least squares method again for the distribution parameters a and b of different exponential functions, the relationship between number of struts and distribution function is obtained, and the mathematical models of the stress probability distribution functions for different supports are established. Finally, the new stress distribution model is introduced by considering the DSSI(Damaged Stress-Strength Interference), and the reliability evaluation for different types of periodically symmetric struts supports is carried out.


2007 ◽  
Vol 36 (13) ◽  
pp. 2081-2081 ◽  
Author(s):  
P. E. Pinto ◽  
R. Giannini ◽  
P. Franchin

2018 ◽  
Vol 21 (15) ◽  
pp. 2326-2339 ◽  
Author(s):  
Shyamal Ghosh ◽  
Swarup Ghosh ◽  
Subrata Chakraborty

Seismic reliability analysis of bridge structures during and succeeding an earthquake event is of significant importance. The more accurate and robust approach of seismic reliability analysis is based on direct Monte Carlo simulation technique. But it is computationally challenging due to the requirement of large number of nonlinear time history analyses. The response surface method–based metamodeling approach is a viable alternative in such situation. This study explores the advantage of moving least squares method–based adaptive response surface method compared to the usually applied least squares method–based response surface method for improved seismic reliability analysis of multi-span bridge pier. The nonlinear time history analyses of the bridge pier are performed in the OpenSees with fibre sections considering a ground motion bin corresponding to the specified hazard level of the bridge site. The seismic reliability analysis results obtained by the usual least squares method and the proposed moving least squares method–based response surface method are compared with that of obtained by more accurate direct Monte Carlo simulation technique to elucidate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document