Thick Plates on Elastic Foundations by Finite Elements

1976 ◽  
Vol 102 (3) ◽  
pp. 461-477
Author(s):  
Otto J. Svec
2017 ◽  
Vol 24 (3) ◽  
pp. 455-469 ◽  
Author(s):  
Pham Hong Cong ◽  
Pham Thi Ngoc An ◽  
Nguyen Dinh Duc

AbstractThis article investigates the nonlinear stability of eccentrically stiffened moderately thick plates made of functionally graded materials (FGM) subjected to in-plane compressive, thermo-mechanical loads. The equilibrium and compatibility equations for the moderately thick plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections, temperature-dependent properties with Pasternak type elastic foundations. By applying the Galerkin method and using a stress function, the effects of material and geometrical properties, temperature-dependent material properties, elastic foundations, boundary conditions, and eccentric stiffeners on the buckling and post-buckling loading capacity of the eccentrically stiffened moderately thick FGM plates in thermal environments are analyzed and discussed.


2013 ◽  
Vol 14 (1) ◽  
pp. 85-104 ◽  
Author(s):  
Bachir Bouderba ◽  
Mohammed Sid Ahmed Houari ◽  
Abdelouahed Tounsi

2009 ◽  
Vol 16 (5) ◽  
pp. 439-454 ◽  
Author(s):  
Korhan Ozgan ◽  
Ayse T. Daloglu

The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4) is used for plate bending analysis based on Mindlin plate theory which is effectively applied to the analysis of thin and thick plates when selective reduced integration technique is used. The first ten natural frequency parameters are presented in tabular and graphical forms to show the effects of the parameters considered in the study. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on elastic foundation is generally larger than that of the other parameters considered in the study.


Sign in / Sign up

Export Citation Format

Share Document