Formulation of Decision Logic Tables

1971 ◽  
Vol 97 (1) ◽  
pp. 439-461
Author(s):  
Jimmy L. Noland ◽  
Chuan C. Feng
Keyword(s):  
Author(s):  
Mahyar Akbari ◽  
Abdol Majid Khoshnood ◽  
Saied Irani

In this article, a novel approach for model-based sensor fault detection and estimation of gas turbine is presented. The proposed method includes driving a state-space model of gas turbine, designing a novel L1-norm Lyapunov-based observer, and a decision logic which is based on bank of observers. The novel observer is designed using multiple Lyapunov functions based on L1-norm, reducing the estimation noise while increasing the accuracy. The L1-norm observer is similar to sliding mode observer in switching time. The proposed observer also acts as a low-pass filter, subsequently reducing estimation chattering. Since a bank of observers is required in model-based sensor fault detection, a bank of L1-norm observers is designed in this article. Corresponding to the use of the bank of observers, a two-step fault detection decision logic is developed. Furthermore, the proposed state-space model is a hybrid data-driven model which is divided into two models for steady-state and transient conditions, according to the nature of the gas turbine. The model is developed by applying a subspace algorithm to the real field data of SGT-600 (an industrial gas turbine). The proposed model was validated by applying to two other similar gas turbines with different ambient and operational conditions. The results of the proposed approach implementation demonstrate precise gas turbine sensor fault detection and estimation.


2019 ◽  
Vol 16 (05) ◽  
pp. 1950029
Author(s):  
Mohammed Abdul Rahman AlShehri ◽  
Shailendra Mishra

Software defined network (SDN) controller selection in SDN is a key challenge to the network administrator. In SDN, control plane is an isolated process and operate on control layer. The controller provides a universal view of the entire network and support applications and services. The three focused parameters for controller selection are productivity, campus network and open source. In SDN, it is vital to have a good device for the efficient processing of all requests made by the switch and for good behavior of the network. For selecting best controller for the specified parameters, decision logic has to be developed that allow us to do comparison of the available controllers. Therefore, in this research we have suggested a methodology that uses analytic-hierarchy-process (AHP) to find a best controller. The approach has been studied and verified for a big organization network setup of Al-Majmaah University, Saudi Arabia. The approach is found to be more effective and increase the network performance significantly.


1966 ◽  
Vol 92 (6) ◽  
pp. 473-490 ◽  
Author(s):  
Steven J. Fenves

2021 ◽  
Vol 45 (4) ◽  
pp. 551-561
Author(s):  
A.V. Pavlov

The article is dedicated to the search for a biologically motivated mechanism of the cognitive phenomenon of violation of the classical formula of total probability for the disjunction of incompatible events, which is considered by a number of researchers as a quantum-like phenomenon. A classical mechanism implemented by the 6f Fourier holography scheme of the resonant architecture that does not require reference to quantum mechanics either in its physical nature or at the level of formalism is demonstrated. In the analysis, the decision-making is interpreted as a choice of alternatives by using the non-cooperative game "Prisoner's Dilemma". The approach to the task is based on the search for a mechanism for forming a conditional estimate under a condition that contradicts the rule of monotonous decision logic. It is demonstrated that this estimate, in contrast to the unconditional and conditional one with a non-contradictory condition, is formed by logic with exception. The ring architecture of the holographic setup corresponds to the biologically inspired neural network concept of the excitation ring and implements cognitive dissonance on logic with exception. Conditions and ranges of violation of the classical formula of total probability in relation to the correlation radius of the reference image recorded in a hologram storing the monotone logic inference rule are analytically determined. The analytical model is confirmed by a quantitative coincidence of the results of numerical modeling with the published results of natural experiments.


Procedia CIRP ◽  
2019 ◽  
Vol 81 ◽  
pp. 435-440
Author(s):  
Marcel Wilms ◽  
Thomas Bergs ◽  
Kristian Arntz ◽  
Lars Johannsen ◽  
Simon Strassburg

Author(s):  
Keith D. Anderson

The remediation and decommissioning of the Hematite Former Fuel Cycle Facility (FFCF), the Hematite Facility, is currently being carried out by Westinghouse Electric Company LLC under the Hematite Decommissioning Project (HDP). The Hematite Facility is located near the town of Hematite, Missouri, USA. The Hematite Facility consists of 228 acres of land with primary operations historically being conducted within the central portion of the property that is roughly 10 acres including Burial Pits and the Site Pond area. Decommissioning and remediation activities are being performed with the eventual objective of the release of the property. Primary contaminants include the legacy disposal and contamination of natural and enriched uranium from the nuclear fuel cycle, as well as chemicals used during the facility operations. Two major regulatory bodies, the U.S. Nuclear Regulatory Commission (NRC) and the Missouri Department of Natural Resources (MDNR), provide critical roles in the approval and oversight of the current regulatory path to remediation, decommissioning and eventual release. Further, remediation and decommissioning activities are performed under the implementing policies, plans, and procedures under the Hematite Decommissioning Plan (DP) and the Record of Decision (ROD). Remediation and decommissioning tasks at the Hematite Former Fuel Cycle Facility, referred to as the Hematite Facility, are performed against a disciplined decision logic flow that applies accumulated technical and monitoring data to determine each step of the excavation, exhumation, and removal of wastes from the Burial Pits and the remaining Areas of Concern (AOC). Decision flow logic is based upon the nuclear criticality safety controls and threshold conditions, relative level of radioactive and chemical contamination, security protocol, and final waste stream disposition. The end result is to remediate the residual radioactive and chemical contamination to approved dose-based and risk-based cleanup criteria as negotiated with U.S. Federal and State Regulators. The purpose of the paper is to provide a summary of the successful implementation of the decision flow logic to the remediation and decommissioning tasks performed to date.


Sign in / Sign up

Export Citation Format

Share Document