physical nature
Recently Published Documents


TOTAL DOCUMENTS

1311
(FIVE YEARS 393)

H-INDEX

54
(FIVE YEARS 8)

2022 ◽  
Vol 6 (1) ◽  
pp. 1-26
Author(s):  
Chao Chen ◽  
Abdelsalam (Sumi) Helal ◽  
Zhi Jin ◽  
Mingyue Zhang ◽  
Choonhwa Lee

Smart spaces such as smart homes deliver digital services to optimize space use and enhance user experience. They are composed of an Internet of Things (IoT), people, and physical content. They differ from traditional computer systems in that their cyber-physical nature ties intimately with the users and the built environment. The impact of ill-programmed applications in such spaces goes beyond loss of data or a computer crash, risking potentially physical harm to the space and its users. Ensuring smart space safety is therefore critically important to successfully deliver intimate and convenient services surrounding our daily lives. By modeling smart space as a highly dynamic database, we present IoT Transactions, an analogy to database transactions, as an abstraction for programming and executing the services as the handling of the devices in smart space. Unlike traditional database management systems that take a “clear room approach,” smart spaces take a “dirty room approach” where imperfection and unattainability of full control and guarantees are the new normal. We identify Atomicity, Isolation, Integrity and Durability (AI 2 D) as the set of properties necessary to define the safe runtime behavior for IoT transactions for maintaining “permissible device settings” of execution and to avoid or detect and resolve “impermissible settings.” Furthermore, we introduce a lock protocol, utilizing variations of lock concepts, that enforces AI 2 D safety properties during transaction processing. We show a brief proof of the protocol correctness and a detailed analytical model to evaluate its performance.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuntao Jiang ◽  
Yongbin Zhang

AbstractMathematically formulating nanochannel flows is challenging. Here, the values of the characteristic parameters were extracted from molecular dynamics simulation (MDS), and directly input to the closed-form explicit flow factor approach model (FFAM) for nanochannel flows. By this way, the physical nature of the simulated system in FFAM is the same with that in MDS. Two nano slit channel heights respectively with two different liquid-channel wall interactions were addressed. The flow velocity profiles across the channel height respectively calculated from MDS and FFAM were compared. By introducing the equivalent value $${{\Delta_{im} } \mathord{\left/ {\vphantom {{\Delta_{im} } D}} \right. \kern-\nulldelimiterspace} D}$$ Δ im / D , FFAM fairly agrees with MDS for all the cases. The study values FFAM in simulating nanochannel flows.


2022 ◽  
Author(s):  
Ruisheng Zheng ◽  
Bing Wang ◽  
Liang Zhang ◽  
Yao Chen ◽  
Robertus Erdelyi

Abstract Solar extreme ultraviolet (EUV) waves are spectacular propagating disturbances with EUV enhancements in annular shapes in the solar corona. These EUV waves carry critical information about the coronal magnetised plasma that can shed light on gaining insight to the elusive physical parameters (e.g. the magnetic field strength) by global solar coronal magneto-seismology (SMS). EUV waves are closely associated with a wide range of solar atmospheric eruptions, from violent flares and coronal mass ejections (CMEs) to less energetic plasma jets or mini-filament eruptions, and can play a role in accelerating particles to non-thermal energies. However, the physical nature and driving mechanism of EUV waves is still under controversy. Here, we report the unique discovery of twin EUV waves (TEWs) that were formed in a single eruption with observations from two different perspectives. In all earlier studies, a single eruption was associated at most in a single EUV wave. The newly found TEWs urge to re-visit our theoretical understanding about the underlying formation mechanism(s) of coronal EUV waves. Two distinct scenarios of TEWs were found. In the first scenario, the two waves were separately associated with a filament eruption and a precursor jet, while in another scenario the two waves were successively associated with a filament eruption. Hence, we label these distinguished scenarios as "fraternal TEWs" and "identical TEWs", respectively. Further, we also suggest that impulsive lateral expansions of two distinct groups of coronal loops are critical to the formation of TEWs in a single eruption.


2022 ◽  
Vol 14 (2) ◽  
pp. 97-102
Author(s):  
Mikhail Podrigalo ◽  
◽  
Andriy Kashkanov ◽  
Mykhailo Kholodov ◽  
Andriy Poberezhnyi ◽  
...  

The term "inertioid" and its first design in 1936 was invented by engineer V. N. Tolchin. Despite the demonstration of unsupported motion using a physical model, the mystery of the inertioid has existed for almost a century. There are several theories explaining the motion of the inertioid (or mechanisms with inertial motion). These theories include the theory of friction, which proves that the movement of the device occurs due to the difference between the coefficients of friction and the coefficients of rolling resistance in contact between the bottom of the machine and the road. In some works, to explain the physical nature of this phenomenon, it is often legitimate to use A. Einstein's theory of relativity from a scientific point of view. In our opinion, the approach to the study of the process of motion of the inertioid should be based on the theory of the gravitational field. In the theory of relativity, A. Einstein notes that rapidly moving frames of reference create their own gravitational fields. Rotating weights create their own potential fields, since they are affected by centripetal accelerations. When the field of rotating loads is imposed on the gravitational field of the earth, accelerations appear that cause the movement of an inertioid (machines with an inertial mover). In fact, we constantly encounter this kind of overlap of potential fields in our daily life. For example, the effect of latitude on the value of the free fall acceleration of a body above the earth's surface is explained by the imposition of the earth's gravitational field of the potential field of its rotation around its axis. In the paper an inertioid with an idealized engine, which creates a constant driving (traction) force directed towards the movement has been investigated. As a result of the study, the equations of the translational motion of a machine with an ideal inertial engine were obtained, an expression for calculating its maximum speed was determined, and the maximum required engine power for the movement of a machine with an ideal inertial engine was determined.


Author(s):  
Pundikala Veeresha ◽  
Mehmet Yavuz ◽  
Chandrali Baishya

The Korteweg–De Vries (KdV) equation has always provided a venue to study and generalizes diverse physical phenomena. The pivotal aim of the study is to analyze the behaviors of forced KdV equation describing the free surface critical flow over a hole by finding the solution with the help of q-homotopy analysis transform technique (q-HATT). he projected method is elegant amalgamations of q-homotopy analysis scheme and Laplace transform. Three fractional operators are hired in the present study to show their essence in generalizing the models associated with power-law distribution, kernel singular, non-local and non-singular. The fixed-point theorem employed to present the existence and uniqueness for the hired arbitrary-order model and convergence for the solution is derived with Banach space. The projected scheme springs the series solution rapidly towards convergence and it can guarantee the convergence associated with the homotopy parameter. Moreover, for diverse fractional order the physical nature have been captured in plots. The achieved consequences illuminates, the hired solution procedure is reliable and highly methodical in investigating the behaviours of the nonlinear models of both integer and fractional order.


Author(s):  
Zheng Wang ◽  
Wei Xiao ◽  
Huiyong Yang ◽  
Shengjie Zhang ◽  
Yukun Zhang ◽  
...  

2021 ◽  
Vol 26 (3) ◽  
Author(s):  
Pavlo Ihorovych Krysenko ◽  
Maksym Olehovych Zoziuk ◽  
Oleksandr Ivanovych Yurikov ◽  
Dmytro Volodymyrovych Koroliuk ◽  
Yurii Ivanovych Yakymenko

An analytical model for creating flat Chladni figures is presented. The equation of a standing wave in the simplest boundary conditions and the Fourier transform are used. Top view images are shown at different frequencies. The practical significance of the results obtained for the further development of the field of creating Chladni figures based on standing waves of different physical nature has been determined.


Author(s):  
Jonathan Dunsby ◽  
Yannis Rammos

Melodic onset asynchrony, whereby the upper or some component of a musical simultaneity may strike the ear ahead of other sounds, is a common feature in the performance of Western art music. It seems to be of high aesthetic value in the history of pianism, often harnessed to the seemingly contradictory “bass lead” that prevailed in the early 20th century, though in fact the two are far from exclusive. Departing from an application of Brent Yorgason’s taxonomy of “hand-breaking” (2009) to canonical, composed examples of onset asynchrony from Beethoven, Schumann, and Liszt, we examine timbral, organological, and aesthetic continuities that underly distinct practices of asynchrony. We consider the physical nature of such normally non-notated “microtiming”, ranging in performance from a few ms of melodic onset asynchrony to about 100ms, above which it is generally agreed that even the casual listener may perceive it. A piano-roll recording by Claude Debussy, of “The Little Shepherd”, illustrates the mix of melodic onset asynchrony, bass lead, and apparent simultaneity that may be applied in a single interpretation. We then discuss the concept of “audibility” and the question of to what extent, and in what ways, the combined transients of piano attacks may interact. We consider with reference to 20th century Russian piano pedagogy why onset asynchrony seems to have been a little documented, rather than an explicit playing technique, even though certain sources, such as a 1973 treatise by Nadezhda Golubovskaya, show it to be ubiquitous and well theorised. Finally, regarding the thinking that has predominated in musical performance studies in recent decades, with its emphasis on average practices and “ordinary” listeners, we suggest that a new emphasis will be fruitful, that is, research on what is particular about the embodied creativity of expert musicians.


2021 ◽  
Vol 163 (1) ◽  
pp. 12
Author(s):  
Wenrui Xu ◽  
Daniel Fabrycky

Abstract We study the excitation of mutual inclination between planetary orbits by a novel secular-orbital resonance in multi-planet systems perturbed by binary companions, which we call “ivection.” The ivection resonance happens when the nodal precession rate of the planet matches a multiple of the orbital frequency of the binary, and its physical nature is similar to the previously studied evection resonance. Capture into an ivection resonance requires encountering the resonance with slowly increasing nodal precession rate, and it can excite the mutual inclination of the planets without affecting their eccentricities. We discuss the possible outcomes of ivection resonance capture, and we use simulations to illustrate that it is a promising mechanism for producing the mutual inclination in systems where planets have significant mutual inclination but modest eccentricity, such as Kepler-108. We also find an apparent deficit of multi-planet systems that would have a nodal precession period comparable to the binary orbital period, suggesting that ivection resonance may inhibit formation of or destablize multi-planet systems with an external binary companion.


Author(s):  
Dominic L. Palazzolo ◽  
Jordan Caudill ◽  
James Baron ◽  
Kevin Cooper

Vaping (inhalation of electronic cigarette-generated aerosol) is a public health concern. Due to recent spikes in adolescent use of electronic cigarettes (ECIGs) and vaping-induced illnesses, demand for scientific inquiry into the physiological effects of electronic cigarette (ECIG) aerosol has increased. For such studies, standardized and consistent aerosol production is required. Many labs generate aerosol by manually activating peristaltic pumps and ECIG devices simultaneously in a predefined manner. The tedium involved with this process (large puff number over time) and risk of error in keeping with puff topography (puff number, duration, interval) are less than optimal. Furthermore, excess puffing on an ECIG device results in battery depletion, reducing aerosol production, and ultimately, its chemical and physical nature. While commercial vaping machines are available, the cost of these machines is prohibitive to many labs. For these reasons, an economical and programmable ECIG aerosol generator, capable of generating aerosol from two atomizers simultaneously, was fabricated, and subsequently validated. Validation determinants include measurements of atomizer temperatures (inside and outside), electrical parameters (current, resistance and power) of the circuitry, aerosol particle distribution (particle counts and mass concentrations) and aerosol delivery (indexed by nicotine recovery), all during stressed conditions of four puffs/minute for 75 min (i.e., 300 puffs). Validation results indicate that the ECIG aerosol generator is better suited for experiments involving ≤ 100 puffs. Over 100 puffs, the amount of variation in the parameters measured tends to increase. Variations between channels are generally higher than variations within a channel. Despite significant variations in temperatures, electrical parameters, and aerosol particle distributions, both within and between channels, aerosol delivery remains remarkably stable for up to 300 puffs, yielding over 25% nicotine recovery for both channels. In conclusion, this programmable, dual-channel ECIG aerosol generator is not only affordable, but also allows the user to control puff topography and eliminate battery drain of ECIG devices. Consequently, this aerosol generator is valid, reliable, economical, capable of using a variety of E-liquids and amenable for use in a vast number of studies investigating the effects of ECIG-generated aerosol while utilizing a multitude of puffing regimens in a standardized manner.


Sign in / Sign up

Export Citation Format

Share Document