Modeling Lane-Changing Behavior of Vehicles at Merge Section under Mixed Traffic Conditions

2021 ◽  
Vol 147 (4) ◽  
pp. 04021006
Author(s):  
Bhargav Naidu Matcha ◽  
Sivakumar Sivanesan ◽  
K. C. Ng
2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Bhargav Naidu Matcha ◽  
Satesh Narayana Namasivayam ◽  
Mohammad Hosseini Fouladi ◽  
K. C. Ng ◽  
Sivakumar Sivanesan ◽  
...  

The area of traffic flow modelling and analysis that bridges civil engineering, computer science, and mathematics has gained significant momentum in the urban areas due to increasing vehicular population causing traffic congestion and accidents. Notably, the existence of mixed traffic conditions has been proven to be a significant contributor to road accidents and congestion. The interaction of vehicles takes place in both lateral and longitudinal directions, giving rise to a two-dimensional (2D) traffic behaviour. This behaviour contradicts with the traditional car-following (CF) or one-dimensional (1D) lane-based traffic flow. Existing one-dimensional CF models did the inclusion of lane changing and overtaking behaviour of the mixed traffic stream with specific alterations. However, these parameters cannot describe the continuous lateral manoeuvre of mixed traffic flow. This review focuses on all the significant contributions made by 2D models in evaluating the lateral and longitudinal vehicle behaviour simultaneously. The accommodation of vehicle heterogeneity into the car-following models (homogeneous traffic models) is discussed in detail, along with their shortcomings and research gaps. Also, the review of commercially existing microscopic traffic simulation frameworks built to evaluate real-world traffic scenario are presented. This review identified various vehicle parameters adopted by existing CF models and whether the current 2D traffic models developed from CF models effectively captured the vehicle behaviour in mixed traffic conditions. Findings of this study are outlined at the end.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Nekoui ◽  
Hossein Pishro-Nik ◽  
Daiheng Ni

Recently, the IntelliDrive initiative has been proposed by the US Department of Transportation (USDOT) to enhance on-road safety and efficiency. In this study, we provide a mathematical framework which predicts the effect of such technologies on the efficiency of multilane highway systems prior to their real-life deployment. Our study shall encompass mixed traffic conditions in which a variety of assisted, automated and unequipped vehicles coexist. We show that intervehicular communications improves the flow of vehicles by reducing the perception-reaction (P-R) times of drivers and, in some cases, allowing for more efficient lane-changing operations. As we shall see, unlike the latter, the former effect of IntelliDrive on driver P-R time is always there, regardless of the specific traffic conditions.


2013 ◽  
Vol 838-841 ◽  
pp. 2117-2120
Author(s):  
Xiao Fang Yang ◽  
Jian Rong Wang ◽  
Xin Zhu Wang

This paper presents a new lane-changing model of multi-lane mixed traffic flow. The influences of heavy vehicles on lane-changing are analyzed. An improved accumulated speed benefit model is proposed in which drivers generate lane-changing intentions based on accumulated speed benefit of preceding vehicle in target lane over the preceding vehicle in current lane, not just relative to the speed and desired speed of subject vehicle. Drivers may accelerate or decelerate during lane-changing due to different traffic conditions. Simulations show that with the increase in the proportion of heavy vehicles, lane changing frequency first increases and then decreases. The model is validated with empirical data.


2011 ◽  
Vol 16 ◽  
pp. 676-685 ◽  
Author(s):  
Joewono Prasetijo ◽  
Mehdi Hossein Pour ◽  
Seyed Mohammad Reza Ghadiri

2021 ◽  
Vol 9 (2) ◽  
pp. 1169-1177
Author(s):  
Sowjanya, Et. al.

In mixed traffic situations, there is weak or no lane behavior of the driver much more complicated where vehicle and driver behavior show a huge difference between them. Road traffic driving behavior on urban midblock sections is one of the most complex phenomena to be examined particularly in heterogeneous traffic conditions. This is often attributed to the capacity of the road section and the traffic flow features at the macroscopic and microscopic level of a road section. Very few researchers have attempted to investigate these features in heterogeneous environments because of the lack of adequate information gathering methods and the amount of complexity involved. In this background, an access controlled mid block road section was selected for video data collection. The main objectives of this study include developing vehicular trajectory data and analyzing the lane changing and vehicle following behavior of driver on the mid block section considering the relative velocities and relative spacing between various types of vehicles under heterogeneous traffic conditions.  The videos were collected from urban roadway in the Kurnool district of Andhra Pradesh. The length of the stretch is 120m and the width is 7.0 m. The data was extracted to know the variations in terms of longitudinal and lateral speeds, velocities, vehicle following and lane changing behavior of the drivers. The data extracted was smoothened by moving average method to minimize the human errors. Lateral amplitude of the vehicles of various types was analyzed. The study revealed that vehicles in the mixed stream, in general and in particular, Bikes and Autos particularly move substantially in the lateral direction.


2017 ◽  
Vol 143 (8) ◽  
pp. 04017041 ◽  
Author(s):  
Arpita Saha ◽  
Satish Chandra ◽  
Indrajit Ghosh

Sign in / Sign up

Export Citation Format

Share Document