preceding vehicle
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 53)

H-INDEX

11
(FIVE YEARS 3)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 578
Author(s):  
Jung Min Pak

Automotive radars, which are used for preceding vehicle tracking, have attracted significant attention in recent years. However, the false measurements that occur in cluttered roadways hinders the tracking process in vehicles; thus, it is essential to develop automotive radar systems that are robust against false measurements. This study proposed a novel track formation algorithm to initialize the preceding vehicle tracking in automotive radar systems. The proposed algorithm is based on finite impulse response filtering, and exhibited significantly higher accuracy in highly cluttered environments than a conventional track formation algorithm. The excellent performance of the proposed algorithm was demonstrated using extensive simulations under real conditions.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jun Yao ◽  
Guoying Chen ◽  
Zhenhai Gao

AbstractTo improve the ride comfort and safety of a traditional adaptive cruise control (ACC) system when the preceding vehicle changes lanes, it proposes a target vehicle selection algorithm based on the prediction of the lane-changing intention for the preceding vehicle. First, the Next Generation Simulation dataset is used to train a lane-changing intention prediction algorithm based on a sliding window support vector machine, and the lane-changing intention of the preceding vehicle in the current lane is identified by lateral position offset. Second, according to the lane-changing intention and collision threat of the preceding vehicle, the target vehicle selection algorithm is studied under three different conditions: safe lane-changing, dangerous lane-changing, and lane-changing cancellation. Finally, the effectiveness of the proposed algorithm is verified in a co–simulation platform. The simulation results show that the target vehicle selection algorithm can ensure the smooth transfer of the target vehicle and effectively reduce the longitudinal acceleration fluctuation of the subject vehicle when the preceding vehicle changes lanes safely or cancels their lane change maneuver. In the case of a dangerous lane change, the target vehicle selection algorithm proposed in this paper can respond more rapidly to a dangerous lane change than the target vehicle selection method of the traditional ACC system; thus, it can effectively avoid collisions and improve the safety of the subject vehicle.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2879
Author(s):  
Hongxia Ge ◽  
Siteng Li ◽  
Chunyue Yan

With the continuous advancement of electronic technology, auto parts manufacturing institutions are gradually applying electronic throttles to automobiles for precise control. Based on the visual angle model (VAM), a car-following model considering the electronic throttle angle of the preceding vehicle is proposed. The stability conditions are obtained through linear stability analysis. By means of nonlinear analysis, the time-dependent Ginzburg–Landau (TDGL) equation is derived first, and then the modified Korteweg-de-Vries (mKdV) equation is derived. The relationship between the two is thus obtained. Finally, in the process of numerical simulations and exploration, it is shown how the visual angle and electronic throttle affect the stability of traffic flow. The simulation results in MATLAB software verify the validity of the model, indicating that the visual angle and electronic throttle can improve traffic stability.


Author(s):  
Saeed Vasebi ◽  
Yeganeh M. Hayeri ◽  
Peter J. Jin

Relatively recent increased computational power and extensive traffic data availability have provided a unique opportunity to re-investigate drivers’ car-following (CF) behavior. Classic CF models assume drivers’ behavior is only influenced by their preceding vehicle. Recent studies have indicated that considering surrounding vehicles’ information (e.g., multiple preceding vehicles) could affect CF models’ performance. An in-depth investigation of surrounding vehicles’ contribution to CF modeling performance has not been reported in the literature. This study uses a deep-learning model with long short-term memory (LSTM) to investigate to what extent considering surrounding vehicles could improve CF models’ performance. This investigation helps to select the right inputs for traffic flow modeling. Five CF models are compared in this study (i.e., classic, multi-anticipative, adjacent-lanes, following-vehicle, and all-surrounding-vehicles CF models). Performance of the CF models is compared in relation to accuracy, stability, and smoothness of traffic flow. The CF models are trained, validated, and tested by a large publicly available dataset. The average mean square errors (MSEs) for the classic, multi-anticipative, adjacent-lanes, following-vehicle, and all-surrounding-vehicles CF models are 1.58 × 10−3, 1.54 × 10−3, 1.56 × 10−3, 1.61 × 10−3, and 1.73 × 10−3, respectively. However, the results show insignificant performance differences between the classic CF model and multi-anticipative model or adjacent-lanes model in relation to accuracy, stability, or smoothness. The following-vehicle CF model shows similar performance to the multi-anticipative model. The all-surrounding-vehicles CF model has underperformed all the other models.


Author(s):  
Liangyao Yu ◽  
Ruyue Wang

Adaptive Cruise Control (ACC) is one of Advanced Driver Assistance Systems (ADAS) which takes over vehicle longitudinal control under necessary driving scenarios. Vehicle in ACC mode automatically adjusts speed to follow the preceding vehicle based on evaluation of the surrounding traffic. ACC reduces drivers’ workload as well as improves driving safety, energy economy, and traffic flow. This article provides a comprehensive review of the researches on ACC. Firstly, an overview of ACC controller and applied control theories are introduced. Their principles and performances are discussed. Secondly, several application cases of ACC control algorithms are presented. Then validation work including simulation, Hardware-in-the-Loop (HiL) test and on-road experiment is descripted to provide ideas for testing ACC systems for different aims and fidelities. In addition, studies on human-machine interaction are also summarized in this review to provide insights on development of ACC from the perspective of users. At last, challenges and potential directions in this field is discussed, including consideration of vehicle dynamics properties, contradiction between algorithm performance and computation as well as integration of ACC to other intelligent functions on vehicles.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2897
Author(s):  
Pier Giuseppe Anselma

Assessing the potential of advanced driver assistance systems requires developing dedicated control algorithms for controlling the longitudinal speed of automated vehicles over time. In this paper, a multiobjective off-line optimal control approach for planning the speed of the following vehicle in adaptive cruise control (ACC) driving is proposed. The implemented method relies on the principle of global optimality fostered by dynamic programming (DP) and aims to minimize propelling energy consumption and enhance passenger comfort. The powertrain model and onboard control system are integrated within the proposed car-following optimization framework. The retained ACC approach ensures that the distance between the following vehicle and the preceding vehicle is always maintained within allowed limits. The flexibility of the proposed method is demonstrated here through ease of implementation on a wide range of powertrain categories, including a conventional vehicle propelled by an internal combustion engine solely, a pure electric vehicle, a parallel P2 hybrid electric vehicle (HEV) and a power-split HEV. Moreover, different driving conditions are considered to prove the effectiveness of the proposed optimization-driven ACC approach. Obtained simulation results suggest that up to 22% energy-saving and 48% passenger comfort improvement might be achieved for the ACC-enabled vehicle compared with the preceding vehicle by implementing the proposed optimization-driven ACC approach. Engineers may adopt the proposed workflow to evaluate corresponding real-time ACC approaches and assess optimal powertrain design solutions for ACC driving.


Author(s):  
Kay Fitzpatrick ◽  
Michael P. Pratt ◽  
Raul Avelar

The operation and design of signalized intersections involves tradeoffs between operational efficiency and safety for a variety of users, including motorists, pedestrians, and bicyclists. Additionally, the mix of vehicle types in the fleet sometimes requires special considerations. These concerns especially apply to the selection of curb radius at the corners, where right-turning vehicles operate close to pedestrians. Larger curb radii accommodate the swept paths of trucks and allow right turns to occur at higher speeds but may compromise safety and security for pedestrians by increasing the crossing distance and increasing the frequency of higher-speed turns. The authors collected right-turn vehicle speeds at 31 urban signalized intersection approaches in Texas with radii ranging from 15 to 70 ft. The authors calibrated a model to predict right-turn speeds as a function of site characteristics including curb radius, leading headway, vehicle type (car versus truck), maneuver of the preceding vehicle (through versus right turn), and signal indication (yellow or green). The analysis results indicate that right-turn speeds increase slightly with increasing radius, if the preceding vehicle proceeds through (rather than turning right) at the intersection, or if the signal indication is yellow rather than green. The calculated 85th percentile turning speed is generally higher than the assumed speed calculated using the radius of curvature equation. These trends should be considered if the intersection is expected to have notable volumes of pedestrians or trucks, as lower speeds are desirable for pedestrian safety, but larger radii may be necessary to accommodate turning trucks.


Sign in / Sign up

Export Citation Format

Share Document