scholarly journals The time scale for the transition to turbulence in a high Reynolds number, accelerated flow

2003 ◽  
Vol 10 (3) ◽  
pp. 614-622 ◽  
Author(s):  
H. F. Robey ◽  
Ye Zhou ◽  
A. C. Buckingham ◽  
P. Keiter ◽  
B. A. Remington ◽  
...  
1984 ◽  
Vol 148 ◽  
pp. 193-205 ◽  
Author(s):  
T. R. Akylas ◽  
J.-P. Demurger

A theoretical study is made of the stability of pipe flow with superimposed rigid rotation to finite-amplitude disturbances at high Reynolds number. The non-axisymmetric mode that requires the least amount of rotation for linear instability is considered. An amplitude expansion is developed close to the corresponding neutral stability curve; the appropriate Landau constant is calculated. It is demonstrated that the flow exhibits nonlinear subcritical instability, the nonlinear effects being particularly strong owing to the large magnitude of the Landau constant. These findings support the view that a small amount of extraneous rotation could play a significant role in the transition to turbulence of pipe flow.


1973 ◽  
Vol 95 (2) ◽  
pp. 229-235 ◽  
Author(s):  
J. P. Johnston

Stabilization of turbulent boundary layer type flows by the action of Coriolis forces engendered by system rotation is studied. Experiments on fully developed, two-dimensional flow in a long, straight channel that was rotated about an axis perpendicular to the plane of mean shear are reviewed to demonstrate the principal effects of stabilization. In particular, the delay of transition to turbulence on the stabilized side of the channel to high Reynolds number (u¯mh/ν) as the rotation number (|Ω|h/u¯m) is increased is demonstrated. A simple method which utilizes the eddy Reynolds number criterion of Bradshaw, is employed to show that rotation-induced suppression of transition may be predicted for the channel flow case. The applicability of the predictive method to boundary layer type flows is indicated.


1994 ◽  
Vol 9 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Rahima K. Mohammed ◽  
Tim A. Osswald ◽  
Timothy J. Spiegelhoff ◽  
Esther M. Sun

Sign in / Sign up

Export Citation Format

Share Document