Generation of tunable far‐infrared radiation by difference frequency mixing using conduction electron spin nonlinearity in InSb

1973 ◽  
Vol 23 (2) ◽  
pp. 107-109 ◽  
Author(s):  
T. J. Bridges ◽  
Van Tran Nguyen
1969 ◽  
Vol 180 (2) ◽  
pp. 363-365 ◽  
Author(s):  
D. W. Faries ◽  
K. A. Gehring ◽  
P. L. Richards ◽  
Y. R. Shen

1971 ◽  
Vol 3 (6) ◽  
pp. 2148-2150 ◽  
Author(s):  
D. W. Faries ◽  
P. L. Richards ◽  
Y. R. Shen ◽  
K. H. Yang

2019 ◽  
Vol 8 (2) ◽  
pp. 71-77
Author(s):  
Ku Yeon Lee ◽  
◽  
Hyung H. Lee ◽  
Suk Chan Hahm

Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Akun Liang ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Ibraheem Yousef ◽  
Catalin Popescu ◽  
...  

We report the first high-pressure spectroscopy study on Zn(IO3)2 using synchrotron far-infrared radiation. Spectroscopy was conducted up to pressures of 17 GPa at room temperature. Twenty-five phonons were identified below 600 cm−1 for the initial monoclinic low-pressure polymorph of Zn(IO3)2. The pressure response of the modes with wavenumbers above 150 cm−1 has been characterized, with modes exhibiting non-linear responses and frequency discontinuities that have been proposed to be related to the existence of phase transitions. Analysis of the high-pressure spectra acquired on compression indicates that Zn(IO3)2 undergoes subtle phase transitions around 3 and 8 GPa, followed by a more drastic transition around 13 GPa.


Sign in / Sign up

Export Citation Format

Share Document