Long‐Range Interaction between Metastable Helium and Ground State Helium

1971 ◽  
Vol 55 (11) ◽  
pp. 5421-5422 ◽  
Author(s):  
G. A. Victor ◽  
K. Sando
2001 ◽  
Vol 15 (22) ◽  
pp. 981-988
Author(s):  
KAZUMOTO IGUCHI

We study the ground state configuration and the excitation energy gaps in the strong coupling limit of the extended Hubbard model with a long-range interaction in one dimension. As proved by Hubbard and Pokrovsky and Uimin, the ground state configuration is quasiperiodic and as proved by Bak and Bruinsma, the excitation energy has a finite gap which forms a devil's stair as a function of the density of particles in the system. We show that the quasiperiodicity and the fractal nature of the excitation energy come from the nature of the long-range interaction that is related to the fractal nature of the Hurwitz Zeta function and the Riemann Zeta function.


2002 ◽  
Vol 718 ◽  
Author(s):  
Jian Yu ◽  
X. J. Meng ◽  
J.L. Sun ◽  
G.S. Wang ◽  
J.H. Chu

AbstractIn this paper, size-induced ferroelectricit yweakening, phase transformation, and anomalous lattice expansion are observed in nanocrystalline BaTiO3 (nc-BaTiO3) deriv ed b y low temperature hydrothermal methods, and they are w ellunderstood using the terms of the long-range interaction and its cooperative phenomena altered by particle size in covalen t ionic nanocrystals. In cubic nc-BaTiO3, five modes centerd at 186, 254, 308, 512 and 716 cm-1 are observed Raman active in cubic nanophase, and they are attributed to local rhombohedral distortion breaking inversion-symmetry in cubic nanophase. The254 and 308 cm-1 modes are significantly affected not only by the concentration of hydroxyl defects, but also their particular configuration. And the 806 cm-1 modes found to be closely associated with OH - absorbed on grain boundaries.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1624
Author(s):  
Leonid Litinskii ◽  
Boris Kryzhanovsky

In the present paper, we examine Ising systems on d-dimensional hypercube lattices and solve an inverse problem where we have to determine interaction constants of an Ising connection matrix when we know a spectrum of its eigenvalues. In addition, we define restrictions allowing a random number sequence to be a connection matrix spectrum. We use the previously obtained analytical expressions for the eigenvalues of Ising connection matrices accounting for an arbitrary long-range interaction and supposing periodic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document