Study of the electronic structure of molecules. XXI. Correlation energy corrections as a functional of the Hartree‐Fock density and its application to the hydrides of the second row atoms

1974 ◽  
Vol 60 (4) ◽  
pp. 1275-1287 ◽  
Author(s):  
George C. Lie ◽  
Enrico Clementi
2018 ◽  
Author(s):  
Oscar A. Douglas-Gallardo ◽  
David A. Sáez ◽  
Stefan Vogt-Geisse ◽  
Esteban Vöhringer-Martinez

<div><div><div><p>Carboxylation reactions represent a very special class of chemical reactions that is characterized by the presence of a carbon dioxide (CO2) molecule as reactive species within its global chemical equation. These reactions work as fundamental gear to accomplish the CO2 fixation and thus to build up more complex molecules through different technological and biochemical processes. In this context, a correct description of the CO2 electronic structure turns out to be crucial to study the chemical and electronic properties associated with this kind of reactions. Here, a sys- tematic study of CO2 electronic structure and its contribution to different carboxylation reaction electronic energies has been carried out by means of several high-level ab-initio post-Hartree Fock (post-HF) and Density Functional Theory (DFT) calculations for a set of biochemistry and inorganic systems. We have found that for a correct description of the CO2 electronic correlation energy it is necessary to include post-CCSD(T) contributions (beyond the gold standard). These high-order excitations are required to properly describe the interactions of the four π-electrons as- sociated with the two degenerated π-molecular orbitals of the CO2 molecule. Likewise, our results show that in some reactions it is possible to obtain accurate reaction electronic energy values with computationally less demanding methods when the error in the electronic correlation energy com- pensates between reactants and products. Furthermore, the provided post-HF reference values allowed to validate different DFT exchange-correlation functionals combined with different basis sets for chemical reactions that are relevant in biochemical CO2 fixing enzymes.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document