Some Hartree—Fock Results for Two‐ and Four‐Electron Atomic Systems

1967 ◽  
Vol 47 (10) ◽  
pp. 4010-4015 ◽  
Author(s):  
Charlotte Froese
Keyword(s):  
1968 ◽  
Vol 10 (5) ◽  
pp. 388-392 ◽  
Author(s):  
Jon Thorhallsson ◽  
Carolyn Fisk ◽  
Serafin Fraga

1969 ◽  
Vol 47 (17) ◽  
pp. 1885-1888 ◽  
Author(s):  
K. M. S. Saxena ◽  
G. Malli

The expressions of the matrix elements of the orbit–orbit interaction for various fN electron configurations are computed and tabulated for general usage. These expressions are used to evaluate the Hartree–Fock values of the orbit–orbit interaction in all the states for a large number of fN electron atomic systems.


1968 ◽  
Vol 12 (1) ◽  
pp. 80-84 ◽  
Author(s):  
Jon Thorhallsson ◽  
Carolyn Fisk ◽  
Serafin Fraga

2010 ◽  
Vol 24 (14) ◽  
pp. 1601-1614
Author(s):  
ALI A. ALZUBADI ◽  
KHALIL H. ALBAYATI

Theoretical isotropic (spherically symmetric) Compton profiles (ICP) have been calculated for many particle systems' He , Li , Be and B atoms in their ground states. Our calculations were performed using Roothan–Hartree–Fock (RHF) wave function, HF wave function of Thakkar and re-optimized HF wave function of Clementi–Roetti, taking into account the impulse approximation. The theoretical analysis included a decomposition of the various intra and inter shells and their contributions in the total ICP. A high momentum region of up to 4 a.u. was investigated and a non-negligible tail was observed in all ICP curves. The existence of a high momentum tail was mainly due to the electron–electron interaction. The ICP for the He atom has been compared with the available experimental data and it is found that the ICP values agree very well with them. A few low order radial momentum expectation values 〈pn〉 and the total energy for these atomic systems have also been calculated and compared with their counterparts' wave functions.


2021 ◽  
pp. 38-44
Author(s):  
A. Glushkov ◽  
V. Kovalchuk ◽  
A. Sofronkov ◽  
A. Svinarenko

We present the optimized version of the quasiparticle density functional theory (DFT), constructed on the principles of the Landau-Migdal Fermi-liquids theory and principles of the optimized one-quasiparticle representation in theory of multielectron systems. The master equations can be naturally obtained on the basis of variational principle, starting  from a Lagrangian of an atomic system as a functional of  three quasiparticle densities. These densities  are similar to the Hartree-Fock (HF)  electron density and kinetical energy density correspondingly, however the third density  has no an analog in the Hartree-Fock or the standard  DFT theory and appears as result of account for the energy dependence of the mass operator S. The elaborated  approach to construction of the eigen-functions basis can be characterized as an improved one in comparison with similar basises of other one-particle representations, namely, in the HF,  the standard Kohn-Sham approximations etc.


Sign in / Sign up

Export Citation Format

Share Document