Classification of Irreducible Unitary Representations of Compact Simple Lie Groups. I

1966 ◽  
Vol 7 (10) ◽  
pp. 1824-1832 ◽  
Author(s):  
M. L. Mehta
2020 ◽  
Vol 32 (4) ◽  
pp. 941-964 ◽  
Author(s):  
Jian Ding ◽  
Chao-Ping Dong

AbstractLet G be a connected complex simple Lie group, and let {\widehat{G}^{\mathrm{d}}} be the set of all equivalence classes of irreducible unitary representations with non-vanishing Dirac cohomology. We show that {\widehat{G}^{\mathrm{d}}} consists of two parts: finitely many scattered representations, and finitely many strings of representations. Moreover, the strings of {\widehat{G}^{\mathrm{d}}} come from {\widehat{L}^{\mathrm{d}}} via cohomological induction and they are all in the good range. Here L runs over the Levi factors of proper θ-stable parabolic subgroups of G. It follows that figuring out {\widehat{G}^{\mathrm{d}}} requires a finite calculation in total. As an application, we report a complete description of {\widehat{F}_{4}^{\mathrm{d}}}.


The classification of all simple real Lie groups is discussed and given explicitly in the form of tables. In particular four classes of groups are identified which contain the Lorentz group. These are the groups which leave bilinear forms in real, complex and quaternionic spaces invariant, and the unimodular group in n -dimension.


Author(s):  
A. A. Astaneh

AbstractIn this paper one more canonical method to construct the irreducible unitary representations of a connected, simply connected nilpotent Lie group is introduced. Although we used Kirillov' analysis to deduce this procedure, the method obtained differs from that of Kirillov's, in that one does not need to consider the codjoint representation of the group in the dual of its Lie algebra (in fact, neither does one need to consider the Lie algebra of the group, provided one knows certain connected subgroups and their characters). The method also differs from that of Mackey's as one only needs to induce characters to obtain all irreducible representations of the group.


2011 ◽  
Vol 151 (3) ◽  
pp. 421-440 ◽  
Author(s):  
JOACHIM SCHWERMER ◽  
CHRISTOPH WALDNER

AbstractWe study the cohomology of compact locally symmetric spaces attached to arithmetically defined subgroups of the real Lie group G = SU*(2n). Our focus is on constructing totally geodesic cycles which originate with reductive subgroups in G. We prove that these cycles, also called geometric cycles, are non-bounding. Thus this geometric construction yields non-vanishing (co)homology classes.In view of the interpretation of these cohomology groups in terms of automorphic forms, the existence of non-vanishing geometric cycles implies the existence of certain automorphic forms. In the case at hand, we substantiate this close relation between geometry and automorphic theory by discussing the classification of irreducible unitary representations of G with non-zero cohomology in some detail. This permits a comparison between geometric constructions and automorphic forms.


Sign in / Sign up

Export Citation Format

Share Document