scholarly journals Away from generalized gradient approximation: Orbital-dependent exchange-correlation functionals

2005 ◽  
Vol 123 (6) ◽  
pp. 062202 ◽  
Author(s):  
E. J. Baerends ◽  
O. V. Gritsenko
2010 ◽  
Vol 09 (06) ◽  
pp. 619-622
Author(s):  
BOTHINA A. HAMAD

In this work, a theoretical study of the structural, electronic and magnetic properties are presented for Mn 0.5 Ni 0.5 alloyed overlayer adsorbed on Cu (001) surface. The calculations were performed using the density functional theory (DFT) and the exchange-correlation potential was treated by the generalized gradient approximation (GGA). The system was fully relaxed except for the central layer, which yields to outward relaxations and inward Mn and Ni surface atoms, respectively in the ferromagnetic and antiferromagnetic configurations. The in-plane ferromagnetic configuration was found to be more stable than the antiferromagnetic one by 25 meV/atom. The local magnetic moments of Mn atoms were found to be about 4 μ B , whereas those of the Ni atoms where found to be 0.46 μ B .


2005 ◽  
Vol 475-479 ◽  
pp. 3103-3106 ◽  
Author(s):  
You Song Gu ◽  
Jian He ◽  
Zhen Ji ◽  
Xiao Yan Zhan ◽  
Yue Zhang ◽  
...  

The electronic structures and magnetic properties of Fe-Pt systems were calculated by CASTEP codes, which employed density functional theory, generalized gradient approximation (GGA), Perdew Burke Ernzerh exchange correlation, Pulay density-mixing scheme and Ultra Soft pseudo potential. The band structures and density of states (DOS) were calculated, together with band populations and magnetic properties. The calculated results of α-Fe show the validatiy of this method in predication magnetic properties. It is found that as the Pt concentration increases, Fe 4s and 3d electrons decrease while 4p electrons increase, and the magnetic moment of Fe atom increases. Pt atoms also contribute to the magnetic moment due to polarization. The calculated magnetization agrees with experimental values quite well.


2009 ◽  
Vol 16 (02) ◽  
pp. 291-296 ◽  
Author(s):  
N. V. PETROVA ◽  
I. N. YAKOVKIN

The binding energies and related energies of associative desorption for oxygen on close-packed ( W (110), Mo (110), and Ru (0001)) and furrowed ( W (112), Mo (112), and [Formula: see text]) surfaces have been calculated by DFT method with generalized gradient approximation for exchange-correlation potential in the revised-Perdew–Burke–Ernzerhof form. The unified approach allows one for a direct comparison of calculated binding energies for different transition metals and different surface geometries, thus revealing the trends that are essential for catalytic properties of surfaces with adsorbed oxygen layers.


2005 ◽  
Vol 1 (4) ◽  
pp. 172-182 ◽  
Author(s):  
Patrizia Calaminici ◽  
Marcela R. Beltrán

Density functional calculations of neutral, cationic and anionic nickel octamer are presented. The structure optimization and frequency analysis were performed on the local density approximation (LDA) level with the exchange correlation functional by Vosko,Wilk and Nusair (VWN). Improved calculations for the stability were based on the generalized gradient approximation (GGA) where the exchange correlation functional of Perdew and Wang (PW) was used. For neutral, cationic and anionic cluster several isomers and different spin multiplicities were investigated in order to find the lowest structures. Structural parameters, relative energies, binding energies, harmonic frequencies, adiabatic ionization potential and electron affinity will be presented. The calculated values are compared with available experimental data.


2021 ◽  
Author(s):  
Jun-Bo Lu ◽  
David Cantu ◽  
Cong-Qiao Xu ◽  
Manh-Thuong Nguyen ◽  
Han-Shi Hu ◽  
...  

We have developed a new set of norm-conserving pseudopotentials and companion Gaussian basis sets for the actinide (An) series (Ac - Lr) using the Goedecker, Teter and Hutter (GTH) formalism with the Perdew, Burke and Ernzerhof (PBE) exchange-correlation functional of generalized gradient approximation (GGA). To test the accuracy and reliability of the newly parameterized An-GTH pseudopotentials and basis sets, a variety of benchmarks on actinide-containing molecules are carried out and compared to all-electron and available experimental results. The new pseudopotentials include both medium- ([Xe]4f14) and large-core ([Xe]4f145d10) options that have successfully reproduced structures and energetics, particularly redox processes. The medium-core size set, in particular, reproduce all-electron calculations over multiple oxidation states from 0 to VII, whereas the large-core set is suitable only for the early series elements and low oxidation states. The underlying reason for these transferability issues are discussed in detail. This work fills a critical void in the literature for studying the chemistry of 5f-block elements in condensed phase.


2018 ◽  
Vol 6 (2) ◽  
pp. 53
Author(s):  
Salah Daoud ◽  
Rabie Mezouar ◽  
Abdelfateh Benmakhlouf

The present work aims to investigate the structural parameters and the piezoelectric coefficients of cubic zinc-blende Aluminum phosphide (AlP) under high pressure up to 21 GPa, using plane wave-pseudopotential (PW-PP) approach in the framework of the density functional theory (DFT) and the density functional perturbation theory (DFPT) with the generalized gradient approximation (GGA) for the exchange-correlation functional. The results obtained are analyzed and compared with other data of the literature. The structural parameters and the piezoelectric coefficients calculated here agree well with other data of the literature. We found also that both the direct and converse piezoelectric coefficients increase with increasing pressure up to 21 GPa. 


Sign in / Sign up

Export Citation Format

Share Document