Mixed-cation designs of magnetic perovskites for Faraday rotation at IR wavelengths

2007 ◽  
Vol 101 (9) ◽  
pp. 09C524 ◽  
Author(s):  
Gerald F. Dionne ◽  
Alexander R. Taussig ◽  
Martin Bolduc ◽  
Lei Bi ◽  
Caroline A. Ross
1988 ◽  
Vol 49 (C8) ◽  
pp. C8-969-C8-970 ◽  
Author(s):  
F. D'Orazio ◽  
F. Giammaria ◽  
F. Lucari ◽  
G. Parone
Keyword(s):  

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-961-C8-962
Author(s):  
M. Guillot ◽  
H. Le Gall ◽  
A. Marchand ◽  
A. Barlet ◽  
M. Artinian ◽  
...  
Keyword(s):  

2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


2021 ◽  
Vol 129 (18) ◽  
pp. 183103
Author(s):  
Minyu Gu ◽  
Krzysztof A. Michalski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document