Energy difference space random walk to achieve fast free energy calculations

2008 ◽  
Vol 128 (19) ◽  
pp. 191102 ◽  
Author(s):  
Donghong Min ◽  
Wei Yang
2021 ◽  
Author(s):  
Drazen Petrov

Free-energy calculations play an important role in the application of computational chemistry to a range of fields, including protein biochemistry, rational drug design or material science. Importantly, the free energy difference is directly related to experimentally measurable quantities such as partition and adsorption coefficients, water activity and binding affinities. Among several techniques aimed at predicting the free-energy differences, perturbation approaches, involving alchemical transformation of one molecule into another through intermediate states, stand out as rigorous methods based on statistical mechanics. However, despite the importance of efficient and accurate free energy predictions, applicability of the perturbation approaches is still largely impeded by a number of challenges. This study aims at addressing two of them: 1) the definition of the perturbation path, i.e., alchemical changes leading to the transformation of one molecule to the other, and 2) determining the amount of sampling along the path to reach desired convergence. In particular, an automatic perturbation builder based on a graph matching algorithm is developed, that is able to identify the maximum common substructure of two molecules and provide the perturbation topologies suitable for free-energy calculations using GROMOS and GROMACS simulation packages. Moreover, it was used to calculate the changes in free energy of a set of post-translational modifications and analyze their convergence behavior. Different methods were tested, which showed that MBAR and extended thermodynamic integration (TI) in combination with MBAR show better performance as compared to BAR, extended TI with linear interpolation and plain TI. Also, a number of error estimators were explored and how they relate to the true error, estimated as the difference in free energy from an extensive set of simulation data. This analysis shows that most of the estimators provide only a qualitative agreement to the true error, with little quantitative predictive power. This notwithstanding, the preformed analyses provided insight into the convergence of free-energy calculations, which allowed for development of an iterative update scheme for perturbation simulations that aims at minimizing the simulation time to reach the convergence, i.e., optimizing the efficiency. Importantly, this toolkit is made available online as an open-source python package (https://github.com/drazen-petrov/SMArt).


2021 ◽  
Author(s):  
Drazen Petrov

Free-energy calculations play an important role in the application of computational chemistry to a range of fields, including protein biochemistry, rational drug design or material science. Importantly, the free energy difference is directly related to experimentally measurable quantities such as partition and adsorption coefficients, water activity and binding affinities. Among several techniques aimed at predicting the free-energy differences, perturbation approaches, involving alchemical transformation of one molecule into another through intermediate states, stand out as rigorous methods based on statistical mechanics. However, despite the importance of efficient and accurate free energy predictions, applicability of the perturbation approaches is still largely impeded by a number of challenges. This study aims at addressing two of them: 1) the definition of the perturbation path, i.e., alchemical changes leading to the transformation of one molecule to the other, and 2) determining the amount of sampling along the path to reach desired convergence. In particular, an automatic perturbation builder based on a graph matching algorithm is developed, that is able to identify the maximum common substructure of two molecules and provide the perturbation topologies suitable for free-energy calculations using GROMOS and GROMACS simulation packages. Moreover, it was used to calculate the changes in free energy of a set of post-translational modifications and analyze their convergence behavior. Different methods were tested, which showed that MBAR and extended thermodynamic integration (TI) in combination with MBAR show better performance as compared to BAR, extended TI with linear interpolation and plain TI. Also, a number of error estimators were explored and how they relate to the true error, estimated as the difference in free energy from an extensive set of simulation data. This analysis shows that most of the estimators provide only a qualitative agreement to the true error, with little quantitative predictive power. This notwithstanding, the preformed analyses provided insight into the convergence of free-energy calculations, which allowed for development of an iterative update scheme for perturbation simulations that aims at minimizing the simulation time to reach the convergence, i.e., optimizing the efficiency. Importantly, this toolkit is made available online as an open-source python package (https://github.com/drazen-petrov/SMArt).


2020 ◽  
Author(s):  
Maximilian Kuhn ◽  
Stuart Firth-Clark ◽  
Paolo Tosco ◽  
Antonia S. J. S. Mey ◽  
Mark Mackey ◽  
...  

Free energy calculations have seen increased usage in structure-based drug design. Despite the rising interest, automation of the complex calculations and subsequent analysis of their results are still hampered by the restricted choice of available tools. In this work, an application for automated setup and processing of free energy calculations is presented. Several sanity checks for assessing the reliability of the calculations were implemented, constituting a distinct advantage over existing open-source tools. The underlying workflow is built on top of the software Sire, SOMD, BioSimSpace and OpenMM and uses the AMBER14SB and GAFF2.1 force fields. It was validated on two datasets originally composed by Schrödinger, consisting of 14 protein structures and 220 ligands. Predicted binding affinities were in good agreement with experimental values. For the larger dataset the average correlation coefficient Rp was 0.70 ± 0.05 and average Kendall’s τ was 0.53 ± 0.05 which is broadly comparable to or better than previously reported results using other methods. <br>


2019 ◽  
Author(s):  
Kyle Konze ◽  
Pieter Bos ◽  
Markus Dahlgren ◽  
Karl Leswing ◽  
Ivan Tubert-Brohman ◽  
...  

We report a new computational technique, PathFinder, that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. Coupling PathFinder with active learning and cloud-based free energy calculations allows for large-scale potency predictions of compounds on a timescale that impacts drug discovery. The process is further accelerated by using a combination of population-based statistics and active learning techniques. Using this approach, we rapidly optimized R-groups and core hops for inhibitors of cyclin-dependent kinase 2. We explored greater than 300 thousand ideas and identified 35 ligands with diverse commercially available R-groups and a predicted IC<sub>50</sub> < 100 nM, and four unique cores with a predicted IC<sub>50</sub> < 100 nM. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns.


2019 ◽  
Author(s):  
Kyle Konze ◽  
Pieter Bos ◽  
Markus Dahlgren ◽  
Karl Leswing ◽  
Ivan Tubert-Brohman ◽  
...  

We report a new computational technique, PathFinder, that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. Coupling PathFinder with active learning and cloud-based free energy calculations allows for large-scale potency predictions of compounds on a timescale that impacts drug discovery. The process is further accelerated by using a combination of population-based statistics and active learning techniques. Using this approach, we rapidly optimized R-groups and core hops for inhibitors of cyclin-dependent kinase 2. We explored greater than 300 thousand ideas and identified 35 ligands with diverse commercially available R-groups and a predicted IC<sub>50</sub> < 100 nM, and four unique cores with a predicted IC<sub>50</sub> < 100 nM. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns.


2019 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Esteban Vöhringer-Martinez

In molecular modeling the description of the interactions between molecules forms the basis for a correct prediction of macroscopic observables. Here, we derive atomic charges from the implicitly polarized electron density of eleven molecules in the SAMPL6 challenge using the Hirshfeld-I and Minimal Basis Set Iterative Stockholder(MBIS) partitioning method. These atomic charges combined with other parameters in the GAFF force field and different water/octanol models were then used in alchemical free energy calculations to obtain hydration and solvation free energies, which after correction for the polarization cost, result in the blind prediction of the partition coefficient. From the tested partitioning methods and water models the S-MBIS atomic charges with the TIP3P water model presented the smallest deviation from the experiment. Conformational dependence of the free energies and the energetic cost associated with the polarization of the electron density are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Germano Heinzelmann ◽  
Michael K. Gilson

AbstractAbsolute binding free energy calculations with explicit solvent molecular simulations can provide estimates of protein-ligand affinities, and thus reduce the time and costs needed to find new drug candidates. However, these calculations can be complex to implement and perform. Here, we introduce the software BAT.py, a Python tool that invokes the AMBER simulation package to automate the calculation of binding free energies for a protein with a series of ligands. The software supports the attach-pull-release (APR) and double decoupling (DD) binding free energy methods, as well as the simultaneous decoupling-recoupling (SDR) method, a variant of double decoupling that avoids numerical artifacts associated with charged ligands. We report encouraging initial test applications of this software both to re-rank docked poses and to estimate overall binding free energies. We also show that it is practical to carry out these calculations cheaply by using graphical processing units in common machines that can be built for this purpose. The combination of automation and low cost positions this procedure to be applied in a relatively high-throughput mode and thus stands to enable new applications in early-stage drug discovery.


Sign in / Sign up

Export Citation Format

Share Document