Ultrafast dynamics of photoexcited charge carriers in nanocrystalline diamond

2008 ◽  
Vol 93 (8) ◽  
pp. 083102 ◽  
Author(s):  
P. Němec ◽  
J. Preclíková ◽  
A. Kromka ◽  
B. Rezek ◽  
F. Trojánek ◽  
...  
2018 ◽  
Vol 52 (7) ◽  
pp. 864-869 ◽  
Author(s):  
D. S. Ponomarev ◽  
R. A. Khabibullin ◽  
A. N. Klochkov ◽  
A. E. Yachmenev ◽  
A. S. Bugaev ◽  
...  

2016 ◽  
Vol 11 (3-4) ◽  
pp. 128-136
Author(s):  
V. O. Kompanets ◽  
S. V. Chekalin ◽  
M. A. Lazov ◽  
N. V. Alov ◽  
A. M. Ionov ◽  
...  

2012 ◽  
Vol 100 (24) ◽  
pp. 241906 ◽  
Author(s):  
J. Barreto ◽  
T. Roger ◽  
A. Kaplan

2020 ◽  
Vol 22 (8) ◽  
pp. 083066
Author(s):  
Steffen Richter ◽  
Oliver Herrfurth ◽  
Shirly Espinoza ◽  
Mateusz Rebarz ◽  
Miroslav Kloz ◽  
...  

Author(s):  
Klaus-Ruediger Peters

Environmental SEM operate at specimen chamber pressures of ∼20 torr (2.7 kPa) allowing stabilization of liquid water at room temperature, working on rugged insulators, and generation of an environmental secondary electron (ESE) signal. All signals available in conventional high vacuum instruments are also utilized in the environmental SEM, including BSE, SE, absorbed current, CL, and X-ray. In addition, the ESEM allows utilization of the flux of charge carriers as information, providing exciting new signal modes not available to BSE imaging or to conventional high vacuum SEM.In the ESEM, at low vacuum, SE electrons are collected with a “gaseous detector”. This detector collects low energy electrons (and ions) with biased wires or plates similar to those used in early high vacuum SEM for SE detection. The detector electrode can be integrated into the first PLA or positioned at any other place resulting in a versatile system that provides a variety of surface information.


Sign in / Sign up

Export Citation Format

Share Document