Detector strategies for environmental scanning electron microscopy

Author(s):  
Klaus-Ruediger Peters

Environmental SEM operate at specimen chamber pressures of ∼20 torr (2.7 kPa) allowing stabilization of liquid water at room temperature, working on rugged insulators, and generation of an environmental secondary electron (ESE) signal. All signals available in conventional high vacuum instruments are also utilized in the environmental SEM, including BSE, SE, absorbed current, CL, and X-ray. In addition, the ESEM allows utilization of the flux of charge carriers as information, providing exciting new signal modes not available to BSE imaging or to conventional high vacuum SEM.In the ESEM, at low vacuum, SE electrons are collected with a “gaseous detector”. This detector collects low energy electrons (and ions) with biased wires or plates similar to those used in early high vacuum SEM for SE detection. The detector electrode can be integrated into the first PLA or positioned at any other place resulting in a versatile system that provides a variety of surface information.

1999 ◽  
Vol 5 (S2) ◽  
pp. 286-287
Author(s):  
Christopher J. Gilpin ◽  
Mohamed S. Baguneid

Environmental scanning electron microscopy (ESEM) has matured into a mainstream technique in many areas of microscopy. Instrumentation has evolved and our understanding of some of the imaging mechanisms has progressed. However the majority of laboratories where ESEMs are located are based around the materials sciences. Despite the fact that ESEM is the only SEM instrument that permits liquid water to be present whilst imaging, the housing of such a microscope in biological EM units has been relatively rare. This authors laboratory is a multi-user EM unit based in a School of Biological Sciences. There exists the opportunity for basic biological scientists, clinical and pre-clinical medical and dental researchers to make use of such a resource. Indeed as the ESEM is housed alongside a conventional high vacuum instrument and a cryo high vacuum instrument there exists the ideal opportunity to carry out comparative studies.This study will examine a range of biological samples using ESEM, cryo SEM and dry high vacuum SEM.


Author(s):  
Howard S. Kaufman ◽  
Keith D. Lillemoe ◽  
John T. Mastovich ◽  
Henry A. Pitt

Gallstones contain precipitated cholesterol, calcium salts, and proteins. Calcium (Ca) bilirubinate, palmitate, phosphate, and carbonate occurring in gallstones have variable morphologies but characteristic windowless energy dispersive x-ray (EDX) spectra. Previous studies of gallstone microstructure and composition using scanning electron microscopy (SEM) with EDX have been limited to dehydrated samples. In this state, Ca bilirubinates appear as either glassy masses, which predominate in black pigment stones, or as clusters, which are found mostly in cholesterol gallstones. The three polymorphs of Ca carbonate, calcite, vaterite, and aragonite, have been identified in gallstones by x-ray diffraction, however; the morphologies of these crystals vary in the literature. The purpose of this experiment was to study fresh gallstones by environmental SEM (ESEM) to determine if dehydration affects gallstone Ca salt morphology.Gallstones and bile were obtained fresh at cholecystectomy from 6 patients. To prevent dehydration, stones were stored in bile at 37°C. All samples were studied within 4 days of procurement.


Author(s):  
S.A. Wight

Measurements of electrons striking the sample in the Environmental Scanning Electron Microscope (ESEM) are needed to begin to understand the effect of the presence of the gas on analytical measurements. Accurate beam current is important to x-ray microanalysis and it is typically measured with a faraday cup. A faraday cup (Figure 1) was constructed from a carbon block embedded in non-conductive epoxy with a 45 micrometer bore platinum aperture over the hole. Currents were measured with an electrometer and recorded as instrument parameters were varied.Instrument parameters investigated included working distance, chamber pressure, condenser percentage, and accelerating voltage. The conditions studied were low vacuum with gaseous secondary electron detector (GSED) voltage on; low vacuum with GSED voltage off; and high vacuum (GSED off). The base conditions were 30 kV, 667 Pa (5 Torr) water vapor, 100,000x magnification with the beam centered inside aperture, GSED voltage at 370 VDC, condenser at 50%, and working distance at 19.5 mm. All modifications of instrument parameters were made from these conditions.


2011 ◽  
Vol 43 (1) ◽  
pp. 105-112
Author(s):  
Z.G. Zhang ◽  
X.F. Wang ◽  
Q.Q. Tian

Bismuth silicate micro-crystals with grain array structure were prepared by sintering method under atmosphere pressure. The samples were characterized for structural and surface morphological properties by X-ray diffraction (XRD) and Environmental scanning electron microscopy (ESEM). The result shows that stable grain arrays grow by iterative mode. If a stable grain array eliminates, a new stable grain array will generate. In a stable parent array, an offspring array may generate after the corresponding partial elimination of its parent array. If one part of an offspring array stops growing, it will be as a new parent array, and then its offspring grain array will create. The sum of the lengths of an offspring array and the corresponding eliminated part of its parent array is equal to the length of the next eliminated part of its parent array. It means the growth rate of an offspring array is equal to that of the corresponding survived part of its parent array. There is a highly correlation between grain array length and average grain line spacing. It means that larger average grain line spacing corresponds to the stable grain array with lager length. When average grain line spacing increases 1?m, the corresponding array length will increase approximately 7.6?m.


1998 ◽  
Vol 4 (S2) ◽  
pp. 182-183
Author(s):  
John F. Mansfield ◽  
Brett L. Pennington

The environmental scanning electron microscope (Environmental SEM) has proved to be a powerful tool in both materials science and the life sciences. Full characterization of materials in the environmental SEM often requires chemical analysis by X-ray energy dispersive spectroscopy (XEDS). However, the spatial resolution of the XEDS signal can be severely degraded by the gaseous environment in the sample chamber. At an operating pressure of 5Torr a significant fraction of the primary electron beam is scattered after it passes through the final pressure limiting aperture and before it strikes the sample. Bolon and Griffin have both published data that illustrates this effect very well. Bolon revealed that 45% of the primary electron beam was scattered by more than 25 μm in an Environmental SEM operating at an accelerating voltage of 30kV, with a water vapor pressure of 3Torr and a working distance of 15mm.


2001 ◽  
Vol 7 (S2) ◽  
pp. 698-699
Author(s):  
Robert A. Carlton ◽  
Charles E. Lyman ◽  
James E. Roberts ◽  
Raynald Gauvin

A number of methods have been proposed to correct for the electron beam scattering effects on xray microanalysis in the environmental scanning electron microscope (ESEM). This paper presents an evaluation of two of these methods. The Doehne method is based on the observation that x-ray counts due to the unscattered electron beam increase with decreasing chamber pressure whereas the inverse is true for x-ray counts due to scattered electrons. The x-ray count intercept, at zero pressure, of the regression lines relating x-ray counts to chamber vapor pressure is an estimate of the high-vacuum intensity. The Gauvin method is based on the relationship between x-ray counts and the fraction of the electron beam that is unscattered, fp.The fraction of the unscattered beam is calculated using an equation derived from scattering theory and uses the accelerating voltage, the gas path length, and the chamber vapor pressure.


2015 ◽  
Vol 14 (3) ◽  
pp. 517-526 ◽  
Author(s):  
Susanne Douglas ◽  
Meredith E. Perry ◽  
William J. Abbey ◽  
Zuki Tanaka ◽  
Bin Chen ◽  
...  

AbstractThe Proterozoic carbonate stromatolites of the Pahrump Group from the Crystal Spring formation exhibit interesting layering patterns. In continuous vertical formations, there are sections of chevron-shaped stromatolites alternating with sections of simple horizontal layering. This apparent cycle of stromatolite formation and lack of formation repeats several times over a vertical distance of at least 30 m at the locality investigated. Small representative samples from each layer were taken and analysed using X-ray diffraction (XRD), X-ray fluorescence (XRF), environmental scanning electron microscopy – energy dispersive X-ray spectrometry, and were optically analysed in thin section. Optical and spectroscopic analyses of stromatolite and of non-stromatolite samples were undertaken with the objective of determining the differences between them. Elemental analysis of samples from within each of the four stromatolite layers and the four intervening layers shows that the two types of layers are chemically and mineralogically distinct. In the layers that contain stromatolites the Ca/Si ratio is high; in layers without stromatolites the Ca/Si ratio is low. In the high Si layers, both K and Al are positively correlated with the presence and levels of Si. This, together with XRD analysis, suggested a high K-feldspar (microcline) content in the non-stromatolitic layers. This variation between these two types of rocks could be due to changes in biological growth rates in an otherwise uniform environment or variations in detrital influx and the resultant impact on biology. The current analysis does not allow us to choose between these two alternatives. A Mars rover would have adequate resolution to image these structures and instrumentation capable of conducting a similar elemental analysis.


2000 ◽  
Vol 6 (4) ◽  
pp. 291-296
Author(s):  
A. Howie

Abstract In large bandgap semiconductors and insulators, the threshold energies for e–h pair production and ionization damage can lie above the vacuum level. For low energy imaging, a window is then opened whose width is potentially sensitive to local changes in work function, doping level, or acidity. Recent progress and future opportunities for damage-free imaging of these properties using low energy electrons are discussed in the light of the underlying physics, as well as of recent instrumental developments in low energy electron microscopy (LEEM), environmental scanning electron microscopy (ESEM), photoelectron emission microscopy (PEEM), scanned probe microscopy (SPM), and projection electron microscopy.


2011 ◽  
Vol 243-249 ◽  
pp. 4119-4124 ◽  
Author(s):  
Long Wen ◽  
Xiao Jiang Wang ◽  
Hao Liu ◽  
Hao Xiang Wu ◽  
Bao Lin Cui ◽  
...  

Buton rock asphalt (BRA) is possessed of both performance and economic advantages. In order to reveal the modification mechanism, X-ray diffraction experiment (XRD), X-ray fluorescence spectrum analysis and environmental scanning electron microscopy experiment (ESEM) are used to study on microstructure of BRA in this paper. It demonstrates that BRA can extremely adsorb free bitumen due to abundant microscopic pores, which consists of 70~80 percent Buton rock (BR) minerals and 20~30 percent pure rock asphalt (RA). RA with high viscosity is strongly adsorbed internal and outer of the surface of BR, which has high alkaline pH, high crystallization and strong surface activity. Then a special microstructure named “RA~BR” blend with stable property and strong spalling-resistance capability develops. Meanwhile, dynamic stability rheology test (DSR) is employed to study on the rheological mechanics property of BRA modified asphalt mastic. The high temperature performance grade (PG) level of BRA modified asphalt mastic with different mixing content is determined. The reasonable mixing content of BRA in matrix asphalt is 20~30 percent. The research proves that BRA modified asphalt possesses wonderful high temperature stability and has broad prospects for pavement application.


Sign in / Sign up

Export Citation Format

Share Document