scholarly journals Application Of Statistical Dynamical X-ray Diffraction Theory To Defective Semiconductor Heterostructures

2009 ◽  
Author(s):  
P. K. Shreeman ◽  
R. J. Matyi ◽  
Erik M. Secula ◽  
David G. Seiler ◽  
Rajinder P. Khosla ◽  
...  
Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


Author(s):  
A. R. Lang

AbstractX-ray topography provides a non-destructive method of mapping point-by-point variations in orientation and reflecting power within crystals. The discovery, made by several workers independently, that in nearly perfect crystals it was possible to detect individual dislocations by X-ray diffraction contrast started an epoch of rapid exploitation of X-ray topography as a new, general method for assessing crystal perfection. Another discovery, that of X-ray Pendellösung, led to important theoretical developments in X-ray diffraction theory and to a new and precise method for measuring structure factors on an absolute scale. Other highlights picked out for mention are studies of Frank-Read dislocation sources, the discovery of long dislocation helices and lines of coaxial dislocation loops in aluminium, of internal magnetic domain structures in Fe-3 wt.% Si, and of stacking faults in silicon and natural diamonds.


1995 ◽  
Vol 39 ◽  
pp. 637-643
Author(s):  
J. Chaudhuri ◽  
F. Hashmi

In this study, the equations based on x-ray diffraction theory were developed to determine the thickness of multiple layer thin films. The kinematical expression of the integrated reflected intensity from the substrate and films was corrected for the primary and secondary extinction effects assuming a mosaic crystal model. As an example of the application of the method, thicknesses of a double heterostructure system, namely AlAs/AIGaAs/GaAs, were determined. Good agreement was obtained between the results from the x-ray measurement and scanning electron microscopy data demonstrating high precision of this technique.


2018 ◽  
Vol 74 (5) ◽  
pp. 481-498 ◽  
Author(s):  
Paul F. Fewster

This article takes the concepts of the `new diffraction theory' [Fewster (2014). Acta Cryst. A70, 257–282] and examines the implications for the interpretation of experimental results and the estimation of structure factors. Further experimental evidence is included to justify the conclusions in the theory, showing that the residual intensity at twice the Bragg angle is a diffraction effect and not associated with the crystal shape. This `enhancement' effect is independent of whether kinematical or dynamical theories are applied and can lead to a clearer understanding of how the dynamical effects are suppressed in imperfect crystals. By applying the idea that the higher-order peaks are due to path lengths of nλ, it is shown that `systematically absent' reflections in the conventional theory may not be absent. Because this new theory considers the intensity to be more distributed, it suggests that the entire structure factor can be difficult to capture by experiment. This article suggests some routes to achieve a good approximation of the structure factors for typical methods of data collection. Any measurement of intensity with background removal will exclude some of the distributed intensity, again leading to an underestimate of the structure factors, and therefore the missing intensity needs to be estimated.


1998 ◽  
Vol 102 (47) ◽  
pp. 9523-9530 ◽  
Author(s):  
Jianshu Cao ◽  
Kent R. Wilson

Sign in / Sign up

Export Citation Format

Share Document