bent crystal
Recently Published Documents


TOTAL DOCUMENTS

412
(FIVE YEARS 27)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Jean-Pierre Guigay ◽  
Manuel Sanchez del Rio

The location of the beam focus when monochromatic X-ray radiation is diffracted by a thin bent crystal is predicted by the `crystal lens equation'. This equation is derived in a general form valid for Bragg and Laue geometries. It has little utility for diffraction in Laue geometry. The focusing effect in the Laue symmetrical case is discussed using concepts of dynamical theory and an extension of the lens equation is proposed. The existence of polychromatic focusing is considered and the feasibility of matching the polychromatic and monochromatic focal positions is discussed.


Author(s):  
Vladimir M. Kaganer ◽  
Ilia Petrov ◽  
Liubov Samoylova

The resolution function of a spectrometer based on a strongly bent single crystal (bending radius of 10 cm or less) is evaluated. It is shown that the resolution is controlled by two parameters: (i) the ratio of the lattice spacing of the chosen reflection to the crystal thickness and (ii) a single parameter comprising crystal thickness, its bending radius, distance to a detector, and anisotropic elastic constants of the chosen crystal. The results allow the optimization of the parameters of bent-crystal spectrometers for the hard X-ray free-electron laser sources.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
L. Bandiera ◽  
I. V. Kyryllin ◽  
C. Brizzolari ◽  
R. Camattari ◽  
N. Charitonidis ◽  
...  

AbstractAn investigation on stochastic deflection of high-energy charged particles in a bent crystal was carried out. In particular, we investigated the deflection efficiency under axial confinement of both positively and negatively charged particles as a function of the crystal orientation, the choice of the bending plane, and of the charge sign. Analytic estimations and numerical simulations were compared with dedicated experiments at the H4 secondary beam line of SPS North Area, with 120 GeV/c electrons and positrons. In the work presented in this article, the optimal orientations of the plane of bending of the crystal, which allow deflecting the largest number of charged particles using a bent crystal in axial orientation, were found.


2021 ◽  
Vol 28 (1) ◽  
pp. 333-349 ◽  
Author(s):  
Andreas C. Scheinost ◽  
Juergen Claussner ◽  
Joerg Exner ◽  
Manuel Feig ◽  
Stefan Findeisen ◽  
...  

ROBL-II provides four different experimental stations to investigate actinide and other alpha- and beta-emitting radionuclides at the new EBS storage ring of ESRF within an energy range of 3 to 35 keV. The XAFS station consists of a highly automatized, high sample throughput installation in a glovebox, to measure EXAFS and conventional XANES of samples routinely at temperatures down to 10 K, and with a detection limit in the sub-p.p.m. range. The XES station with its five bent-crystal analyzer, Johann-type setup with Rowland circles of 1.0 and 0.5 m radii provides high-energy resolution fluorescence detection (HERFD) for XANES, XES, and RIXS measurements, covering both actinide L and M edges together with other elements accessible in the 3 to 20 keV energy range. The six-circle heavy duty goniometer of XRD-1 is equipped for both high-resolution powder diffraction as well as surface-sensitive CTR and RAXR techniques. Single crystal diffraction, powder diffraction with high temporal resolution, as well as X-ray tomography experiments can be performed at a Pilatus 2M detector stage (XRD-2). Elaborate radioprotection features enable a safe and easy exchange of samples between the four different stations to allow the combination of several methods for an unprecedented level of information on radioactive samples for both fundamental and applied actinide and environmental research.


IUCrJ ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 102-115
Author(s):  
Ari-Pekka Honkanen ◽  
Simo Huotari

Toroidally and spherically bent single crystals are widely employed as optical elements in hard X-ray spectrometry at synchrotron and free-electron laser light sources, and in laboratory-scale instruments. To achieve optimal spectrometer performance, a solid theoretical understanding of the diffraction properties of such crystals is essential. In this work, a general method to calculate the internal stress and strain fields of toroidally bent crystals and how to apply it to predict their diffraction properties is presented. Solutions are derived and discussed for circular and rectangular spherically bent wafers due to their prevalence in contemporary instrumentation.


2020 ◽  
Vol 27 (6) ◽  
pp. 1618-1625
Author(s):  
Yuki Wakisaka ◽  
Bing Hu ◽  
Daiki Kido ◽  
Md. Harun Al Rashid ◽  
Wenhan Chen ◽  
...  

A bent crystal Laue analyser (BCLA) is an X-ray energy analyser used for fluorescence X-ray absorption fine-structure (XAFS) spectroscopy to separate the fluorescence X-ray emission line of a target atom from the elastic scattering X-rays and other fluorescence emission lines. Here, the feasibility of the BCLA for total reflection fluorescence XAFS (TRF-XAFS), which has a long X-ray footprint on the substrate surface owing to grazing incidence, was tested. The focal line of the BCLA was adjusted on the X-ray footprint and the XAFS signal for one monolayer of Pt deposited on a 60 nm Au film with high sensitivity was obtained. Although range-extended XAFS was expected by the rejection of Au fluorescence arising from the Au substrate, a small glitch was found in the Au L 3 edge because of the sudden change of the complex refraction index of the Au substrate at the Au edge. This abnormal spectrum feature can be removed by reflectivity correction using Au foil absorption data. BCLA combined with TRF-XAFS spectroscopy (BCLA + TRF-XAFS) is a new technique for the in situ surface analysis of highly dispersed systems even in the presence of a liquid overlayer.


Author(s):  
D. Mirarchi ◽  
A. S. Fomin ◽  
S. Redaelli ◽  
W. Scandale

AbstractSeveral studies are on-going at CERN in the framework of the Physics Beyond Collider study group, with main aim of broadening the physics research spectrum using the available accelerator complex and infrastructure. The possibility to design a layout that allows fixed-target experiments in the primary vacuum of the CERN Large Hadron Collider (LHC), without the need of a dedicated extraction line, is part of these studies. The principle of the layouts presented in this paper is to deflect beam halo protons on a fixed-target placed in the LHC primary vacuum, by means of the channeling process in bent crystals. Moreover, the presence of a second bent crystal adjacent to the target opens a unique opportunity for the first direct measurement of electric and magnetic dipole moments of short-lived baryons. Two possible layouts are reported, together with a thorough evaluation on their expected performance and impact on LHC operations.


Sign in / Sign up

Export Citation Format

Share Document