Short‐time‐scale self‐focusing of electromagnetic beams in a magnetoplasma

1979 ◽  
Vol 50 (2) ◽  
pp. 751-752
Author(s):  
D. P. Tewari ◽  
R. R. Sharma
Author(s):  
Ghanshyam Rai

<div><p><em>A high-power Gaussian Whistler propagating in a magnatoplasma becomes self-focused because of (i) ponderomotive force and (ii) nonuniform heating nonlinearities (i) being dominant for t &lt;&lt; T and (ii) being dominant for t &gt; t<sub>E</sub>. On short time scale (t &lt;&lt; t<sub>E</sub> ) whistlers of all frequencies can be focused (the self – focusing length is very large for ω= </em><em> /2 and decreases rapidly on both sides), whereas on the long time scale (t &gt; t<sub>E</sub>) only high frequency whistlers (ω&gt; </em><em> /2) are focused. At very high powers the plasma is depleted almost completely from the axial region and self-focusing does not occur, rather, defocusing takes place. </em></p><p><em>            A plane uniform whistler of high intensity is seen to be unstable for small scale fluctuations, i.e., it must break up into filaments in course of it propagation. The growth rate increases with decreasing scale length of perturbation and is seen to be a saturating function of power density of the beam. </em></p></div>


1993 ◽  
Vol 21 (2) ◽  
pp. 196-201
Author(s):  
Søren Achim Nielsen ◽  
Thomas Hougaard

An alternative test is presented, in which algal cultures are used for testing toxic substances. This test system is based on variations in the size distribution of cells in test cultures as a measurement of growth. Thus, inhibition of mitotic activity is used as a measurement for toxic effects. The test can be performed on a short time-scale and is very sensitive to even weak toxic doses.


1996 ◽  
Vol 32 (2) ◽  
pp. 212-221 ◽  
Author(s):  
Eglee Gomez Fermin ◽  
Francisco G. Figueiras ◽  
Belen Arbones ◽  
Maria Luisa Villarino

Sign in / Sign up

Export Citation Format

Share Document