scholarly journals Instabilities in the spin-up of a rotating, stratified fluid

2010 ◽  
Vol 22 (5) ◽  
pp. 054108 ◽  
Author(s):  
R. J. Munro ◽  
M. R. Foster ◽  
P. A. Davies
1973 ◽  
Vol 61 (3) ◽  
pp. 609-624 ◽  
Author(s):  
D. J. Acheson

We examine the hydromagnetic stability of a radially stratified fluid rotating between two coaxial cylinders, with particular emphasis on the case when the angular velocity greatly exceeds both buoyant and Alfvén frequencies. If the magnetic field is predominantly azimuthal instabilities then have an essentially non-axisymmetric and wavelike character. Various bounds on their phase speeds and growth rates are derived, including a ‘quadrant’ theorem analogous to Howard's semicircle theorem for Kelvin–Helmholtz instability. Their strong tendency to propagate against the basic rotation (i.e. ‘westward’), previously noted by the author in the study of a more simplified (homogeneous) model, seems relatively insensitive to the generation mechanism (e.g. unstable gradient of magnetic field, angular velocity or density), but a number of counterexamples show that this constraint need not apply if the magnetic field displays significant spatial variations of direction as well as magnitude and that eastward-propagating amplifying modes are then possible.


Sign in / Sign up

Export Citation Format

Share Document