boundary mixing
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 24)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Martín Merino Ibarra ◽  
Jorge A. Ramírez-Zierold ◽  
Patricia M. Valdespino-Castillo ◽  
Fermin S. Castillo-Sandoval ◽  
Andrea P. Guzmán-Arias ◽  
...  

Physical processes play important roles in controlling eutrophication and oligotrophication. In stratified lakes, internal waves can cause vertical transport of heat and nutrients without breaking the stratification, through boundary mixing events. Such is the case in tropical Valle de Bravo (VB) lake, where strong diurnal winds drive internal waves, boundary mixing and hypolimnetic warming during stratification periods. We monitored VB during 18 years (2001-2018) when important water-level fluctuations (WLF) occurred, affecting mixing and nutrient flux. Mean hypolimnetic temperature increase (0.06–1.04°C month-1) occurred in all the stratifications monitored. We analyzed temperature distributions and modeled the hypolimnion heat budget to assess vertical mixing between layers (26,618–140,526 m-3h-1), vertical diffusivity coefficient KZ (6.2x10-7–3.3x10-6 m2s-1) and vertical nutrient entrainment to epilimnion on monthly scale. Stability also varied as a function of WLF. Nutrient flux to the epilimnion ranged 0.36–5.99 mg m-2d-1 for soluble reactive phosphorus (SRP) and 5.8–97.1 mg m-2d-1 for dissolved inorganic nitrogen (DIN). During low water-level years, vertical nutrient fluxes increase and can account for up to >40% of the total external nutrients load to the lake. Vertical mixing changes related to WLF affect nutrient recycling, their flux to sediments, ecosystemic metabolic balance and planktonic composition of VB.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3011
Author(s):  
Martín Merino-Ibarra ◽  
Jorge A. Ramírez-Zierold ◽  
Patricia M. Valdespino-Castillo ◽  
Fermin S. Castillo-Sandoval ◽  
Andrea P. Guzmán-Arias ◽  
...  

Physical processes play important roles in controlling eutrophication and oligotrophication. In stratified lakes, internal waves can cause vertical transport of heat and nutrients without breaking the stratification, through boundary mixing events. Such is the case in tropical Valle de Bravo (VB) reservoir lake, where strong diurnal winds drive internal waves, boundary mixing, and hypolimnetic warming during stratification periods. We monitored VB during 21 years (2001–2021) when important water-level fluctuations occurred, affecting mixing and nutrient flux. Stability also varied as a function of water level. Hypolimnetic warming (0.009–0.028 °C day−1) occurred in all the stratifications monitored. We analyzed temperature distributions and modeled the hypolimnion heat budget to assess vertical mixing between layers (0.639–3.515 × 10−6 m3 day−1), vertical diffusivity coefficient KZ (2.5 × 10−6–13.6 × 10−6 m2 s−1), and vertical nutrient transport to the epilimnion. Nutrient flux from the metalimnion to the epilimnion ranged 0.42–5.99 mg P m−2day−1 for soluble reactive phosphorus (SRP) and 5.8–101.7 mg N m−2day−1 for dissolved inorganic nitrogen (DIN). Vertical mixing and the associated nutrient fluxes increase evidently as the water level decreases 8 m below capacity, and they can increase up to fivefold if the water level drops over 12 m. The observed changes related to water level affect nutrient recycling, ecosystemic metabolic balance, and planktonic composition of VB.


Author(s):  
Martín Merino Ibarra ◽  
Jorge A. Ramírez-Zierold ◽  
Patricia M. Valdespino-Castillo ◽  
Fermin S. Castillo-Sandoval ◽  
Andrea P. Guzmán-Arias ◽  
...  

Physical processes play important roles in controlling eutrophication and oligotrophication. In stratified lakes, internal waves can cause vertical transport of heat and nutrients without breaking the stratification, through boundary mixing events. Such is the case in tropical Valle de Bravo (VB) lake, where strong diurnal winds drive internal waves, boundary mixing and hypolimnetic warming during stratification periods. We monitored VB during 18 years (2001-2018) when important water-level fluctuations (WLF) occurred, affecting mixing and nutrient flux. Mean hypolimnetic temperature increase (0.06–1.04°C month-1) occurred in all the stratifications monitored. We analyzed temperature distributions and modeled the hypolimnion heat budget to assess vertical mixing between layers (26,618–140,526 m-3h-1), vertical diffusivity coefficient KZ (6.2x10-7–3.3x10-6 m2s-1) and vertical nutrient entrainment to epilimnion on monthly scale. Stability also varied as a function of WLF. Nutrient flux to the epilimnion ranged 0.36–5.99 mg m-2d-1 for soluble reactive phosphorus (SRP) and 5.8–97.1 mg m-2d-1 for dissolved inorganic nitrogen (DIN). During low water-level years, vertical nutrient fluxes increase and can account for up to >40% of the total external nutrients load to the lake. Vertical mixing changes related to WLF affect nutrient recycling, their flux to sediments, ecosystemic metabolic balance and planktonic composition of VB.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 237
Author(s):  
Kurt L. Polzin ◽  
Binbin Wang ◽  
Zhankun Wang ◽  
Fred Thwaites ◽  
Albert J. Williams

Results from a pilot program to assess boundary mixing processes along the northern continental slope of the Gulf of Mexico are presented. We report a novel attempt to utilize a turbulence flux sensor on a conventional mooring. These data document many of the features expected of a stratified Ekman layer: a buoyancy anomaly over a height less than that of the unstratified Ekman layer and an enhanced turning of the velocity vector with depth. Turbulent stress estimates have an appropriate magnitude and are aligned with the near-bottom velocity vector. However, the Ekman layer is time dependent on inertial-diurnal time scales. Cross slope momentum and temperature fluxes have significant contributions from this frequency band. Collocated turbulent kinetic energy dissipation and temperature variance dissipation estimates imply a dissipation ratio of 0.14 that is not sensibly different from canonical values for shear instability (0.2). This mixing signature is associated with production in the internal wave band rather than frequencies associated with turbulent shear production. Our results reveal that the expectation of a quasi-stationary response to quasi-stationary forcing in the guise of eddy variability is naive and a boundary layer structure that does not support recent theoretical assumptions concerning one-dimensional models of boundary mixing.


Author(s):  
Martín Merino-Ibarra ◽  
Jorge A. Ramírez-Zierold ◽  
Patricia M. Valdespino-Castillo ◽  
Fermin Sergio Castillo-Sandoval ◽  
Andrea P. Guzmán-Arias ◽  
...  

Physical processes play important roles in controlling eutrophication and oligotrophication. In stratified lakes, internal waves (IW) can cause vertical transport of heat and nutrients without breaking the stratification, through boundary mixing (BM) events. Such is the case in tropical Valle de Bravo (VB) lake, where strong diurnal winds drive IW, BM and hypolimnetic warming during stratification periods. We monitored VB during 18 years (2001-2018) when important water-level fluctuations (WLF) occurred, affecting mixing and nutrient flux. Mean hypolimnetic temperature increase (0.06–1.04°C month-1) occurred in all the stratifications monitored. We analyzed temperature distributions and modeled the hypolimnion heat budget to assess vertical mixing between layers (26,618–140,526 m-3h-1), vertical diffusivity coefficient KZ (6.2x10-7–3.3x10-6 m2s-1) and vertical nutrient entrainment to epilimnion on monthly scale. Stability also varied as a function of WLF. Nutrient flux to the epilimnion ranged 0.36–5.99 mg m-2d-1 for soluble reactive phosphorus (SRP) and 5.8–97.1 mg m-2d-1 for dissolved inorganic nitrogen (DIN). During low water-level years, vertical nutrient fluxes increase and can account for up to >40% of the total external nutrients load to the lake. Vertical mixing changes with WLF affect nutrient recycling, their flux to sediments, metabolic balance and planktonic composition of VB.


Author(s):  
Vishnu Varma ◽  
Bernhard Müller

Abstract We present a first 3D magnetohydrodynamic (MHD) simulation of convective oxygen and neon shell burning in a non-rotating 18 M⊙ star shortly before core collapse to study the generation of magnetic fields in supernova progenitors. We also run a purely hydrodynamic control simulation to gauge the impact of the magnetic fields on the convective flow and on convective boundary mixing. After about 17 convective turnover times, the magnetic field is approaching saturation levels in the oxygen shell with an average field strength of $\mathord {\sim }10^{10}\, \mathrm{G}$, and does not reach kinetic equipartition. The field remains dominated by small to medium scales, and the dipole field strength at the base of the oxygen shell is only 109 G. The angle-averaged diagonal components of the Maxwell stress tensor mirror those of the Reynolds stress tensor, but are about one order of magnitude smaller. The shear flow at the oxygen-neon shell interface creates relatively strong fields parallel to the convective boundary, which noticeably inhibit the turbulent entrainment of neon into the oxygen shell. The reduced ingestion of neon lowers the nuclear energy generation rate in the oxygen shell and thereby slightly slows down the convective flow. Aside from this indirect effect, we find that magnetic fields do not appreciably alter the flow inside the oxygen shell. We discuss the implications of our results for the subsequent core-collapse supernova and stress the need for longer simulations, resolution studies, and an investigation of non-ideal effects for a better understanding of magnetic fields in supernova progenitors.


Author(s):  
L J A Scott ◽  
R Hirschi ◽  
C Georgy ◽  
W D Arnett ◽  
C Meakin ◽  
...  

Abstract 3D hydrodynamics models of deep stellar convection exhibit turbulent entrainment at the convective-radiative boundary which follows the entrainment law, varying with boundary penetrability. We implement the entrainment law in the 1D Geneva stellar evolution code. We then calculate models between 1.5 and 60 M⊙ at solar metallicity (Z = 0.014) and compare them to previous generations of models and observations on the main sequence. The boundary penetrability, quantified by the bulk Richardson number, RiB, varies with mass and to a smaller extent with time. The variation of RiB with mass is due to the mass dependence of typical convective velocities in the core and hence the luminosity of the star. The chemical gradient above the convective core dominates the variation of RiB with time. An entrainment law method can therefore explain the apparent mass dependence of convective boundary mixing through RiB. New models including entrainment can better reproduce the mass dependence of the main sequence width using entrainment law parameters A ∼ 2 × 10−4 and n = 1. We compare these empirically constrained values to the results of 3D hydrodynamics simulations and discuss implications.


2021 ◽  
Author(s):  
Kirstin Schulz ◽  
Markus Janout ◽  
Yueng-Djern Lenn ◽  
Eugenio Ruiz-Castillo ◽  
Igor Polyakov ◽  
...  

<p>Inflowing Atlantic Water forms a significant heat reservoir in the Arctic Ocean. In the Barents Sea, where the Atlantic Water layer resides close to the surface, strong upward heat fluxes reduce the sea ice cover. Along with a warming climate, an eastward progression of these conditions typical for the Barents Sea is anticipated. These new conditions have the potential to cause dramatic regime shifts in the Laptev Sea region, where the sea ice and the oceanic surface layer are currently sheltered from the warm Atlantic Water by a permanent halocline. Understanding and quantifying the dominant mixing processes in the Siberian Seas is hence crucial to predict how mixing and sea ice conditions, as well as particle and nutrient transport pathways will evolve in the future.</p><p>Based on recent temperature and current velocity profiles from this region, we quantify the Atlantic Water heat loss along its pathway around the Arctic basin margins. Contemporaneous turbulent microstructure measurement reveal that only 20% of this heat loss takes place in the deep basin, emphasizing the important role of stronger mixing in the continental slope region. Observed boundary mixing processes include:</p><ul><li> <p>Mixing in the frictional near bottom layer, strongly enhanced at the lee side of a topographic features and where large temperature gradients associated with the upper bound of the Atlantic Water layer are present in the turbulent near bottom layer.</p> </li> <li> <p>Spatially confined but energetic mixing events over the whole water column. These events are ephemeral but re-occurring and can homogenize the intermediate water column down to a depth of over 300m, with substantial implications for heat transport, the vertical distribution of nutrients and cross-slope particle transport.</p> </li> </ul><p>The presented results provide new insights into the complex mixing and transport patterns at the Arctic basin margins, and further emphasize the importance of boundary mixing across disciplines.</p>


2021 ◽  
Author(s):  
Georgiy Kirillin ◽  
Sergey Bogdanov ◽  
Sergey Volkov

<p>The Reynolds stress tensor (RST) is the key characteristic of turbulence describing the paths of turbulent kinetic energy transfer and its anisotropy. Despite recent technical advances in application of multi-beam acoustic Doppler current profilers (ADCPs) to in situ acquiring of the RST components, derivation of the full Reynolds tensor from raw flow measurements remains a challenging problem. We present a method for derivation of the full set of turbulent stresses, based on combined use of two ADCPs with two beams from adjacent devices crossing at some point.  In the proposed framework, two 3-beam ADCPs with vertically aligned axes constitute the minimum configuration sufficient to derive 6 equations for all 6 RST components. <br>The method was applied to studying turbulence in a convectively mixed layer in ice-covered Lake Kilpisjärvi. The calculated dynamics of all six stress components revealed diurnal periodicity along with the variations with the periods of a few hours. The pulsations intensities (diagonal components of RST) remained positive except short outliers; less than 5% of cases did not meet the so-called realizability requirements (positive definiteness of the stress matrix). The off-diagonal stresses demonstrated sign-changing dynamics, mirroring the inter-component energy transfer.<br>The ratio of pulsation intensities along vertical and horizontal axes varied in the range from 0.02 to 0.25. The r.m.s. values of horizontal and vertical pulsations reached diurnal maximums of 4 and 1 mm/s correspondingly, the latter being close to 1/3 of the convective velocity w*, in accordance with the previous studies on free convection. <br>The new approach provides an immediate insight into the internal structure of the turbulent boundary mixing, especially relevant to anisotropic non-stationary flows, like buoyancy-driven convection. The preliminary results on under-ice convection elucidate strong anisotropy of the convective flow — a key to understanding the heat and mass transport in ice-covered waters.</p>


Sign in / Sign up

Export Citation Format

Share Document