Hydromagnetic wavelike instabilities in a rapidly rotating stratified fluid

1973 ◽  
Vol 61 (3) ◽  
pp. 609-624 ◽  
Author(s):  
D. J. Acheson

We examine the hydromagnetic stability of a radially stratified fluid rotating between two coaxial cylinders, with particular emphasis on the case when the angular velocity greatly exceeds both buoyant and Alfvén frequencies. If the magnetic field is predominantly azimuthal instabilities then have an essentially non-axisymmetric and wavelike character. Various bounds on their phase speeds and growth rates are derived, including a ‘quadrant’ theorem analogous to Howard's semicircle theorem for Kelvin–Helmholtz instability. Their strong tendency to propagate against the basic rotation (i.e. ‘westward’), previously noted by the author in the study of a more simplified (homogeneous) model, seems relatively insensitive to the generation mechanism (e.g. unstable gradient of magnetic field, angular velocity or density), but a number of counterexamples show that this constraint need not apply if the magnetic field displays significant spatial variations of direction as well as magnitude and that eastward-propagating amplifying modes are then possible.

2012 ◽  
Vol 698 ◽  
pp. 358-373 ◽  
Author(s):  
Krzysztof A. Mizerski ◽  
Wladimir Lyra

AbstractIt has recently been suggested that the magneto-rotational instability (MRI) is a limiting case of the magneto-elliptic instability (MEI). This limit is obtained for horizontal modes in the presence of rotation and an external vertical magnetic field, when the aspect ratio of the elliptic streamlines tends to infinite. In this paper we unveil the link between these previously unconnected mechanisms, explaining both the MEI and the MRI as different manifestations of the same magneto-elliptic-rotational instability (MERI). The growth rates are found and the influence of the magnetic and rotational effects is explained, in particular the effect of the magnetic field on the range of negative Rossby numbers at which the horizontal instability is excited. Furthermore, we show how the horizontal rotational MEI in the rotating shear flow limit is linked to the MRI by the use of the local shearing box model, typically used in the study of accretion discs. In such a limit the growth rates of the two instability types coincide for any power-law-type background angular velocity radial profile with negative exponent corresponding to the value of the Rossby number of the rotating shear flow. The MRI requirement for instability is that the background angular velocity profile is a decreasing function of the distance from the centre of the disc, which corresponds to the horizontal rotational MEI requirement of negative Rossby numbers. Finally a physical interpretation of the horizontal instability, based on a balance between the strain, the Lorentz force and the Coriolis force, is given.


2007 ◽  
Vol 25 (1) ◽  
pp. 271-282 ◽  
Author(s):  
R. Smets ◽  
G. Belmont ◽  
D. Delcourt ◽  
L. Rezeau

Abstract. Using hybrid simulations, we examine how particles can diffuse across the Earth's magnetopause because of finite Larmor radius effects. We focus on tangential discontinuities and consider a reversal of the magnetic field that closely models the magnetopause under southward interplanetary magnetic field. When the Larmor radius is on the order of the field reversal thickness, we show that particles can cross the discontinuity. We also show that with a realistic initial shear flow, a Kelvin-Helmholtz instability develops that increases the efficiency of the crossing process. We investigate the distribution functions of the transmitted ions and demonstrate that they are structured according to a D-shape. It accordingly appears that magnetic reconnection at the magnetopause is not the only process that leads to such specific distribution functions. A simple analytical model that describes the built-up of these functions is proposed.


The stability of viscous flow between two coaxial cylinders maintained by a constant transverse pressure gradient is considered when the fluid is an electrical conductor and a uniform magnetic field is impressed in the axial direction. The problem is solved and the dependence of the critical number for the onset of instability on the strength of the magnetic field and the coefficient of electrical conductivity of the fluid is determined.


2018 ◽  
Vol 14 (S342) ◽  
pp. 201-204
Author(s):  
Xinwu Cao

AbstractIt is still a mystery why only a small fraction of quasars contain relativistic jets. A strong magnetic field is a necessary ingredient for jet formation. Gas falls from the Bondi radius RB nearly freely to the circularization radius Rc, and a thin accretion disk is formed within Rc We suggest that the external weak magnetic field threading interstellar medium is substantially enhanced in this region, and the magnetic field at Rc can be sufficiently strong to drive outflows from the disk if the angular velocity of the gas is low at RB. In this case, the magnetic field is efficiently dragged in the disk, because most angular momentum of the disk is removed by the outflows that lead to a significantly high radial velocity. The strong magnetic field formed in this way may accelerate jets in the region near the black hole, either by the Blandford-Payne or/and Blandford-Znajek mechanisms. If the angular velocity of the circumnuclear gas is low, the field advection in the thin disk is inefficient, and it will appear as a radio-quiet (RQ) quasar.


2019 ◽  
Author(s):  
Yanyan Yang ◽  
Chao Shen ◽  
Yong Ji

Abstract. It is generally believed that field aligned currents (FACs) and the ring current (RC) are two dominant parts of the inner magnetosphere. However, using the Cluster spacecraft crossing of the pre-midnight inner plasma sheet in the latitude region between 10° N and 30° N, it is found that, during large storm events, in addition to FACs and the RC, there also exist strong southward and northward currents, which cannot be FACs, because the magnetic field in these regions is mainly along the XY plane. Detailed investigation shows that both magnetic field lines (MFLs) and currents in these regions highly fluctuate. When the curvature of MFLs changes direction in the XY plane, the current also alternatively switches between southward and northward. Further analysis of the current generation mechanism indicates that the most reasonable candidate for the origin of these southward and northward currents is the curvature drift of energetic particles.


2014 ◽  
Vol 605 ◽  
pp. 629-632 ◽  
Author(s):  
N. Hadjigeorgiou

Magnetic sensors offer many essential benefits: they enable contactless and thus without wear measurement of mechanical amounts of such as the rotation angle and angular velocity. And are a powerful and economical solution. In this work became a successful attempt to detect and record the noise of a Anisotropic Magnetoresistors (AMR) sensor, hte HMC2003, which manufactured by Honeywell Inc. was tested for its ability to detect the magnetic field and as well as how the corruption, which are involved due to the noise.


1984 ◽  
Vol 32 (2) ◽  
pp. 331-346 ◽  
Author(s):  
H. C. Barr ◽  
T. J. M. Boyd ◽  
R. Rankin

The effects of a d.c. magnetic field on stimulated Raman sidescatter from laser-produced plasmas is studied. For exact sidescatter along the magnetic field, the Raman instability separates into two distinct decays in which the scattered light is either a right (RHCP) or left (LHCP) circularly polarized electromagnetic wave. Growth rates of the instabilities can be enhanced in the former case but are diminished in the latter. The magnetic field induced effects are greatest near the quarter critical density where frequency shifts can be especially significant, being equal to ± ¼Ωc for decay into RHCP and LHCP waves, respectively.


2021 ◽  
Vol 91 (8) ◽  
pp. 1199
Author(s):  
В.М. Коровин

We study Kelvin-Helmholtz instability which develops when a homogenous gas flow is moving over a horizontal surface of a ferrofluid of given physical properties moving in the same direction, in presence of a homogeneous magnetic field parallel to this direction. Magnetic field intensity range includes the values that correspond to the interval where magnetization curve reaches magnetization saturation level. Stability area is constructed in the “magnetic field intensity – dimensionless relative velocity of fluids” parameter plane.


Sign in / Sign up

Export Citation Format

Share Document