helmholtz instability
Recently Published Documents


TOTAL DOCUMENTS

925
(FIVE YEARS 142)

H-INDEX

57
(FIVE YEARS 7)

2022 ◽  
Vol 14 (2) ◽  
pp. 324
Author(s):  
Jiaxin Liu ◽  
Xiaoquan Song ◽  
Wenrui Long ◽  
Yiyuan Fu ◽  
Long Yun ◽  
...  

The Doppler lidar system can accurately obtain wind profiles with high spatiotemporal resolution, which plays an increasingly important role in the research of atmospheric boundary layers and sea–land breeze. In September 2019, Doppler lidars were used to carry out observation experiments of the atmospheric wind field and pollutants in Shenzhen. Weather Research and Forecasting showed that the topography of Hongkong affected the sea breeze to produce the circumfluence flow at low altitudes. Two sea breezes from the Pearl River Estuary and the northeast of Hong Kong arrived at the observation site in succession, changing the wind direction from northeast to southeast. Based on the wind profiles, the structural and turbulent characteristics of the sea breeze were analyzed. The sea breeze front was accurately captured by the algorithm based on fuzzy logic, and its arrival time was 17:30 on 25 September. The boundary between the sea breeze and the return flow was separated by the edge enhancement algorithm. From this, the height of the sea breeze head (about 1100 m) and the thickness of the sea breeze layer (about 700 m) can be obtained. The fluctuated height of the boundary and the spiral airflow nearby revealed the Kelvin–Helmholtz instability. The influence of the Kelvin–Helmholtz instability could be delivered to the near-surface, which was verified by the spatiotemporal change of the horizontal wind speed and momentum flux. The intensity of the turbulence under the control of the sea breeze was significantly lower than that under the land breeze. The turbulent intensity was almost 0.1, and the dissipation rate was between 10−4 and 10−2 m2·s−3 under the land breeze. The turbulent intensity was below 0.05, and the dissipation rate was between 10−5 and 10−3 m2·s−3 under the sea breeze. The turbulent parameters showed peaks and large gradients at the boundary and the sea breeze front. The peak value of the turbulent intensity was around 0.3, and the dissipation rate was around 0.1 m2·s−3. The round-trip effect of sea–land breeze caused circulate pollutants. The recirculation factor was maintained at 0.5–0.6 at heights where the sea and land breeze alternately controlled (below 600 m), as well as increasing with a decreasing duration of the sea breeze. The factor exceeded 0.9 under the control of the high-altitude breeze (above 750 m). The convergence and rise of the airflow at the front led to collect pollutants, causing a sharp decrease in air quality when the sea breeze front passed.


2022 ◽  
Vol 34 (1) ◽  
pp. 012104
Author(s):  
Surya Narayan Maharana ◽  
Manoranjan Mishra

Author(s):  
Matteo Faganello ◽  
Manuela Sisti ◽  
Francesco Califano ◽  
Benoit Lavraud

Abstract A 3D two-fluid simulation, using plasma parameters as measured by MMS on September 8th 2015, shows the nonlinear development of the Kelvin-Helmholtz instability at the Earth’s magnetopause. It shows an extremely rich dynamics, including the development of a complex magnetic topology, vortex merging and secondary instabilities. Vortex induced and mid-latitude magnetic reconnection coexist and produce an asymmetric distribution of magnetic reconnection events. Off-equator reconnection exhibits a predominance of events in the southern hemisphere during the early nonlinear phase, as observed by satellites at the dayside magnetopause. The late nonlinear phase shows the development of vortex pairing for all latitudes while secondary Kelvin-Helmholtz instability develops only in the northern hemisphere leading to an enhancement of the occurrence of off-equator reconnection there. Since vortices move tailward while evolving, this suggests that reconnection events in the northern hemisphere should dominate at the nightside magnetopause.


Author(s):  
P. A. Delamere ◽  
N. P. Barnes ◽  
X. Ma ◽  
J. R. Johnson

The flow shear-driven Kelvin-Helmholtz (KH) instability is ubiquitous in planetary magnetospheres. At Earth these surface waves are important along the dawn and dusk flanks of the magnetopause boundary while at Jupiter and Saturn the entire dayside magnetopause boundary can exhibit KH activity due to corotational flows in the magnetosphere. Kelvin-Helmholtz waves can be a major ingredient in the so-called viscous-like interaction with the solar wind. In this paper, we review the KH instability from the perspective of hybrid (kinetic ions, fluid electrons) simulations. Many of the simulations are based on parameters typically found at Saturn’s magnetopause boundary, but the results can be generally applied to any KH-unstable situation. The focus of the discussion is on the ion kinetic scale and implications for mass, momentum, and energy transport at the magnetopause boundary.


2021 ◽  
Vol 13 (4) ◽  
pp. 25-33
Author(s):  
Ilinca-Laura BURDULEA ◽  
Alina BOGOI

The topic of this paper is the Kelvin-Helmholtz instability, a phenomenon which occurs on the interface of a stratified fluid, in the presence of a parallel shear flow, when there is a velocity and density difference across the interface of two adjacent layers. This paper focuses on a numerical simulation modelled by the Taylor-Goldstein equation, which represents a more realistic case compared to the basic Kelvin-Helmholtz shear flow. The Euler system is solved with new modelled smooth velocity and density profiles at the interface. The flux at cell boundaries is reconstructed by implementing a third order WENO (Weighted Essentially Non-Oscillatory) method. Next, a Riemann solver builds the fluxes at cell interfaces. The use of both Rusanov and HLLC solvers is investigated. Temporal discretization is done by applying the second order TVD (total variation diminishing) Runge-Kutta method on a uniform grid. Numerical simulations are performed comparatively for both Kelvin-Helmholtz and Taylor-Goldstein instabilities, on the same simulation domains. We find that increasing the number of grid points leads to a better accuracy in shear layer vortices visualization. Thus, we can conclude that applying the Taylor-Goldstein equation improves the realism in the general fluid instability modelling.


Abstract Kelvin-Helmholtz instability (KH) waves have been broadly shown to affect the growth of hydrometeors within a region of falling precipitation, but formation and growth from KH waves at cloud top needs further attention. Here, we present detailed observations of cloud-top KH waves that produced a snow plume that extended to the surface. Airborne transects of cloud radar aligned with range height indicator scans from ground-based precipitation radar track the progression and intensity of the KH wave kinetics and precipitation. In-situ cloud probes and surface disdrometer measurements are used to quantify the impact of the snow plume on the composition of an underlying supercooled liquid water (SLW) cloud and the snowfall observed at the surface. KH wavelengths of 1.5 km consisted of ~750-m-wide up- and downdrafts. A distinct fluctus region appeared as a wave-breaking cloud top where the fastest updraft was observed to exceed 5 m s−1. Relatively weaker updrafts of 0.5-1.5 m s−1 beneath the fluctus and partially overlapping the dendritic growth zone were associated with steep gradients in reflectivity of −5 to 20 dBZe in as little as 500 m depths due to rapid growth of pristine planar ice crystals. The falling snow removed ~80% of the SLW content from the underlying cloud and led to a twofold increase in surface liquid equivalent snowfall rate from 0.6 to 1.3 mm hr−1. This paper presents the first known study of cloud-top KH waves producing snowfall with observations of increased snowfall rates at the surface.


2021 ◽  
Vol 9 ◽  
Author(s):  
E. A. Kronberg ◽  
J. Gorman ◽  
K. Nykyri ◽  
A. G. Smirnov ◽  
J. W. Gjerloev ◽  
...  

The Kelvin-Helmholtz instability (KHI) and its effects relating to the transfer of energy and mass from the solar wind into the magnetosphere remain an important focus of magnetospheric physics. One such effect is the generation of Pc4-Pc5 ultra low frequency (ULF) waves (periods of 45–600 s). On July 3, 2007 at ∼ 0500 magnetic local time the Cluster space mission encountered Pc4 frequency Kelvin-Helmholtz waves (KHWs) at the high latitude magnetopause with signatures of persistent vortices. Such signatures included bipolar fluctuations of the magnetic field normal component associated with a total pressure increase and rapid change in density at vortex edges; oscillations of magnetosheath and magnetospheric plasma populations; existence of fast-moving, low-density, mixed plasma; quasi-periodic oscillations of the boundary normal and an anti-phase relation between the normal and parallel components of the boundary velocity. The event occurred during a period of southward polarity of the interplanetary magnetic field according to the OMNI data and THEMIS observations at the subsolar point. Several of the KHI vortices were associated with reconnection indicated by the Walén relation, the presence of deHoffman-Teller frames, field-aligned ion beams observed together with bipolar fluctuations in the normal magnetic field component, and crescent ion distributions. Global magnetohydrodynamic simulation of the event also resulted in KHWs at the magnetopause. The observed KHWs associated with reconnection coincided with recorded ULF waves at the ground whose properties suggest that they were driven by those waves. Such properties were the location of Cluster’s magnetic foot point, the Pc4 frequency, and the solar wind conditions.


Author(s):  
Stefan Eriksson ◽  
Xuanye Ma ◽  
James L. Burch ◽  
Antonius Otto ◽  
Scot Elkington ◽  
...  

The MMS satellites encountered a Kelvin-Helmholtz instability (KHI) period in the early non-linear phase at the post-noon flank magnetopause on 8 Sep 2015. The adjacent magnetosheath was characterized by a pre-dominantly northward Bz > 0 magnetic field with weakly positive in-plane components in a GSM coordinate system. Ion velocity distribution functions indicate at least 17 KH vortex intervals with two typically D-shaped ion beam distributions, commonly associated with reconnection exhausts, that stream in both directions along a mostly northward magnetic field at 350–775 km/s with a median 525 km/s ion beam speed. The counter-streaming ion beams are superposed on a core population of slowly drifting magnetosheath ions with a field-aligned 50–200 km/s speed. Each interval lasted no more than 5.25 s with a median duration of 1.95 s corresponding to in-plane spatial scales 3 < ΔS < 22 di assuming a constant 1 di = 61 km ion inertial scale and a tailward VKH∼258 km/s KH vortex propagation speed along the MMS trajectory. The counter-streaming ions are predominantly observed in the warm KH vortex region between the cold magnetosheath proper and the hot isotropic ion temperature of a low-latitude boundary layer as the MMS constellation traverses a KH vortex. The in-plane spatial scales and the locations of the observed counter-streaming ion beams generally agree with the predictions of twice-reconnected magnetic fields at two mid-latitude reconnection (MLR) regions in a two-fluid three-dimensional numerical simulation previously reported for this KH event. MMS typically recorded a higher phase space density of the fast parallel ion beam that we associate with a tailward reconnection exhaust from the southern MLR (SMLR) and a lower phase space density of the fast anti-parallel ion beam that we associate with a tailward reconnection exhaust from the northern MLR (NMLR) of similar speed. This is either consistent with MMS being closer to the SMLR region than the NMLR region, or that the KHI conditions may have favored reconnection in the SMLR region for the observed in-plane magnetosheath magnetic field as predicted by a two-fluid three-dimensional numerical simulation.


Author(s):  
Priya M. Gouder ◽  
Praveen I. Chandaragi ◽  
Krishna B. Chavaraddi ◽  
G. B. Marali

The Kelvin-Helmholtz instability (KHI) occurs at the interface amongst two fluids, which are in relative motion with a common boundary. The growth rate of waves occurs whenever the relative velocity is greater as compared with the critical relative velocity. In the present paper, the influence of boundary roughness on KHI under the impact magnetic field in a couple-stress fluid layer bounded by a rigid surface at the lower side and upper side by a fluid saturated porous layer. Using suitable surface and boundary conditions, we have derived the dispersion relation and results are depicted graphically. As observed in presence of sharp interface, magnetic field exhibits stabilizing effect however, destabilizing effect is shown by the buoyancy force on KHI. Also, noted that the growth rate of interface reduces, as there is a rise in roughness parameter value.


Sign in / Sign up

Export Citation Format

Share Document