secondary circulation
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 29)

H-INDEX

28
(FIVE YEARS 2)

Author(s):  
Ting-Yu Cha ◽  
Michael M. Bell ◽  
Alexander J. DesRosiers

AbstractHurricane Matthew (2016) was observed by ground-based polarimetric radars in Miami (KAMX), Melbourne (KMLB), and Jacksonville (KJAX) and a NOAA P3 airborne tail Doppler radar near the coast of the southeastern United States during an eyewall replacement cycle (ERC). The radar observations indicate that Matthew’s primary eyewall was replaced with a weaker outer eyewall, but unlike a classic ERC, Matthew did not reintensify after the inner eyewall disappeared. Triple Doppler analysis was calculated from the NOAA P3 airborne fore and aft radar scanning combined with the KAMX radar data during the period of secondary eyewall intensification and inner eyewall weakening from 19 UTC 6 October to 00 UTC 7 October. Four flight passes of the P3 aircraft show the evolution of the reflectivity, tangential winds, and secondary circulation as the outer eyewall became well-established. Further evolution of the ERC is analyzed from the ground-based single Doppler radar observations for 35 hours with high temporal resolution at a 5-minute interval from 19 UTC 6 October to 00 UTC 8 October using the Generalized Velocity Track Display (GVTD) technique. The single-Doppler analyses indicate that the inner eyewall decayed a few hours after the P3 flight, while the outer eyewall contracted but did not reintensify and the asymmetries increased episodically. The analysis suggests that the ERC process was influenced by a complex combination of environmental vertical wind shear, an evolving axisymmetric secondary circulation, and an asymmetric vortex Rossby wave damping mechanism that promoted vortex resiliency despite increasing shear.


2021 ◽  
Vol 51 (5) ◽  
pp. 1417-1439
Author(s):  
Esther Capó ◽  
James C. McWilliams ◽  
Evan Mason ◽  
Alejandro Orfila

AbstractWe present a phenomenological description and dynamical analysis of the Alboran fronts using a realistic simulation at submesoscale resolution. The study is focused on east Alboran fronts emerging within relatively strong flows that separate from the Spanish coast into the basin interior. Despite modest lateral shifting associated with the position of the Alboran anticyclonic gyres and variations in intensity, these fronts present a similar structure and dynamical configuration as the climatological Almeria–Oran front. The statistical analysis of our solution shows that strained-induced frontogenesis is a recurrent submesoscale mechanism associated with these fronts, and the process is assessed in terms of the advective Lagrangian frontogenetic tendencies associated with buoyancy and velocity horizontal gradients. Intermittency in their strength and patterns is indicative of high variability in the occurrence of active frontogenesis in association with the secondary (overturning) circulation across the frontal gradient. As a result, we find many episodes with strong surface fronts that do not have much associated downwelling. Frontogenesis and the associated secondary circulation are further explored during two particular frontal events, both showing strong downwelling of (1) cm s−1 extending down into the pycnocline. A frontogenetic contribution of turbulent vertical momentum mixing to the secondary circulation is identified in the easternmost region during the cold season, when the dynamics are strongly influenced by the intrusion of the salty Northern Current. The background vertical velocity fields observed during the analyzed events indicate other currents in the submesoscale range, including tidal and topographic internal waves.


2021 ◽  
Author(s):  
Esther Capó ◽  
James C. McWilliams ◽  
Evan Mason ◽  
Alejandro Orfila

<p>We present a phenomenological description and dynamical analysis of the Alboran fronts using a realistic simulation at submesoscale resolution. The study is focused on east Alboran fronts emerging within relatively strong flows that separate from the Spanish coast into the basin interior. The statistical analysis of our solution shows that strained-induced frontogenesis is a recurrent submesoscale mechanism associated with these fronts, and the process is assessed in terms of the advective Lagrangian frontogenetic tendencies associated with buoyancy and velocity horizontal gradients. Intermittency in their strength and patterns is indicative of high variability in the occurrence of active frontogenesis in association with the secondary circulation across the frontal gradient. As a result, we find many episodes with strong surface fronts that do not have much associated downwelling. Frontogenesis and the associated secondary circulation are further explored during two particular frontal events, both showing strong downwelling of O(1) cm s−1 extending down into the pycnocline. A frontogenetic contribution of turbulent vertical momentum mixing to the secondary circulation is identified in the easternmost region during the cold season, when the dynamics are strongly influenced by the intrusion of the salty Northern Current. The background vertical velocity fields observed during the analyzed events indicate other currents in the submesoscale range, including tidal and topographic Internal waves.</p>


Author(s):  
Li-Zhi Shen ◽  
Chun-Chieh Wu ◽  
Falko Judt

AbstractThis study attempts to understand how surface heat fluxes in different storm regions affect tropical cyclone (TC) size. The Advanced Research Weather Research and Forecasting (ARW-WRF) model (version 3.5.1) is used to simulate Typhoon Megi (2016). A series of numerical experiments are carried out, including a control simulation and several sensitivity experiments with surface heat fluxes suppressed in different TC regions [to mimic the reduction of the Wind-Induced Surface Heat Exchange (WISHE) feedback in the inner and/or outer core]. The results show that with surface heat fluxes suppressed in the entire domain, the TC tends to be smaller. Meanwhile, the TC size is more sensitive to the surface heat flux change in the outer core than to that in the inner core. Suppressing surface heat fluxes can weaken the rainbands around the suppressed area, which in turn slows down the secondary circulation. When the surface heat flux is suppressed in the inner-core region, the weakening of the secondary circulation associated with the diminished inner rainbands is limited to the inner core region, and only slightly affects the absolute angular momentum import from the outer region, thus having negligible impact on TC size. However, suppression of surface heat fluxes in the outer-core region leads to less active outer rainbands and a more substantial weakening of secondary circulation. This results in less absolute momentum import from the outer region, and in turn, a smaller TC.


Author(s):  
Yousuke Sato ◽  
Yoshiaki Miyamoto ◽  
Hirofumi Tomita

AbstractThe dependence of lightning frequency on the lifecycle of an idealized tropical cyclone (TC) was investigated using a three-dimensional meteorological model coupled with an explicit lightning model. To investigate this dependence, an idealized numerical simulation covering the initial state to the steady state (SS) of an idealized TC was conducted. The simulation successfully reproduced the temporal evolution of lightning frequency reported by previous observational studies. Our analyses showed that the dependence originates from changes in the types of convective cloud with lightning over the lifecycle of the TC. Before rapid intensification (RI) and in the early stage of RI, convective cloud cells that form under high-convective available potential energy (CAPE) conditions are the main contributors to lightning. As the TC reaches the late stage of RI and approaches SS, the secondary circulation becomes prominent and convective clouds in the eyewall region alongside the secondary circulation gradually become the main contributors to the lightning. In the convective cloud cells formed under high-CAPE conditions, upward velocity is strong and large charge density is provided through non-inductive charge separation induced by graupel collisions. This large charge density frequently induces lightning in the clouds. On the other hand, the vertical velocity in the eyewall is weak, and tends to contribute to lightning only when the TC reaches the mature stage. Our analyses imply that the maximum lightning frequency that occurs before the maximum intensity of a TC corresponds to the stage of a TC’s lifecycle when convective cloud cells are generated most frequently and moisten the upper troposphere.


2021 ◽  
Vol 13 (1) ◽  
pp. 227-253
Author(s):  
James C. McWilliams

Frontogenesis is the fluid-dynamical processes that rapidly sharpen horizontal density gradients and their associated horizontal velocity shears. It is a positive feedback process where the ageostrophic, overturning secondary circulation in the cross-front plane accelerates the frontal sharpening until an arrest occurs through frontal instability and other forms of turbulent mixing. Several well-known types of oceanic frontal phenomena are surveyed, their impacts on oceanic system functioning are assessed, and future research is envisioned.


2021 ◽  
Vol 78 (1) ◽  
pp. 75-95
Author(s):  
Michael T. Montgomery ◽  
John Persing

AbstractThis study investigates a claim made by Heng et al. in an article published in 2017 and intimated soon after in their article published in 2018 that axisymmetric “balanced dynamics can well capture the secondary circulation in the full-physics model” during hurricane spinup. Using output from a new, convection-permitting, three-dimensional numerical simulation of an intensifying hurricane, azimuthally averaged forcings of tangential momentum and heat are diagnosed to force an axisymmetric Eliassen balance model under strict balance conditions. The balance solutions are found, inter alia, to poorly represent the peak inflow velocity in the boundary layer and present a layer of relatively deep inflow extending well above the boundary layer in the high-wind-speed region of the vortex. Such a deep inflow layer, a hallmark of the classical spinup mechanism for tropical cyclones comprising the radial convergence of absolute angular momentum above the boundary layer, is not found in the numerical simulation during the period of peak intensification. These deficiencies are traced to the inability of the balance model to represent the nonlinear boundary layer spinup mechanism. These results are contrasted with a pseudobalance Eliassen formulation that improves the solution in some respects while sacrificing strict thermal wind balance. Overall, the quantitative results refute the Heng et al. claim and implicate the general necessity of the nonlinear boundary layer spinup mechanism to explain the spinup of a hurricane in realistic model configurations and in reality.


2021 ◽  
Vol 244 ◽  
pp. 10031
Author(s):  
Galina Semenova

Why does Russia need “garbage reform”? This reform was a consequence of the adopted strategy for environmental safety of Russia until 2025. This document recognized the existing problem with garbage and outlined ways to solve this problem. At the moment, about 30 billion tons of waste have accumulated at Russian landfills. More and more landfills are overcrowded, and garbage is almost not involved in secondary circulation and is not recycled. The construction of new landfills means, among other things, the use of land not for farming, but for creating dumps. This cannot go on indefinitely. The environmental safety strategy assumes that with the help of the “garbage reform”, it is possible to solve such tasks as increasing environmental safety, recycling more waste for secondary use, reducing the burden on the environment, creating a unified system of collection, transportation, processing and disposal of waste in the country, and gradually move to a ban on the disposal of waste that has not been sorted, as well as to mechanical and chemical treatment. The subject of study is the reform of waste disposal. The purpose of the study is to identify the negative impact of garbage waste on the environment. Methodology. To study the topic, objects of waste disposal and the share of their processing were examined. Results - it is planned to completely change the waste collection and disposal system in Russia.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2969
Author(s):  
Tatyana P. Lyubimova ◽  
Anatoly P. Lepikhin ◽  
Yanina N. Parshakova ◽  
Vadim Y. Kolchanov ◽  
Carlo Gualtieri ◽  
...  

A rapid downstream weakening of the processes that drive the intensity of transverse mixing at the confluence of large rivers has been identified in the literature and attributed to the progressive reduction in channel scale secondary circulation and shear-driven mixing with distance downstream from the junction. These processes are investigated in this paper using a three-dimensional computation of the Reynolds averaged Navier Stokes equations combined with a Reynolds stress turbulence model for the confluence of the Kama and Vishera rivers in the Russian Urals. Simulations were carried out for three different configurations: an idealized planform with a rectangular cross-section (R), the natural planform with a rectangular cross-section (P), and the natural planform with the measured bathymetry (N), each one for three different discharge ratios. Results show that in the idealized configuration (R), the initial vortices that form due to channel-scale pressure gradients decline rapidly with distance downstream. Mixing is slow and incomplete at more than 10 multiples of channel width downstream from the junction corner. However, when the natural planform and bathymetry are introduced (N), rates of mixing increase dramatically at the junction corner and are maintained with distance downstream. Comparison with the P case suggests that it is the bathymetry that drives the most rapid mixing and notably when the discharge ratio is such that a single channel-scale vortex develops aided by curvature in the post junction channel. This effect is strongest when the discharge of the tributary that has the same direction of curvature as the post junction channel is greatest. A comprehensive set of field data are required to test this conclusion. If it holds, theoretical models of mixing processes in rivers will need to take into account the effects of bathymetry upon the interaction between river discharge ratio, secondary circulation development, and mixing rates.


Sign in / Sign up

Export Citation Format

Share Document