R-process in Supernovae and Gamma-Ray Bursts

Author(s):  
T. Kajino ◽  
S. Harikae ◽  
T. Yoshida ◽  
K. Nakamura ◽  
W. Aoki ◽  
...  
Keyword(s):  
2021 ◽  
Vol 922 (2) ◽  
pp. 185
Author(s):  
Wataru Ishizaki ◽  
Kenta Kiuchi ◽  
Kunihito Ioka ◽  
Shinya Wanajo

Abstract The gravitational wave event GW170817 with a macronova/kilonova shows that a merger of two neutron stars ejects matter with radioactivity including r-process nucleosynthesis. A part of the ejecta inevitably falls back to the central object, possibly powering long-lasting activities of a short gamma-ray burst (sGRB), such as extended and plateau emissions. We investigate fallback accretion with r-process heating by performing one-dimensional hydrodynamic simulations and developing a semi-analytical model. We show that the usual fallback rate dM/dt ∝ t −5/3 is halted by the heating because pressure gradients accelerate ejecta beyond an escape velocity. The suppression is steeper than Chevalier’s power-law model through Bondi accretion within a turn-around radius. The characteristic halting timescale is ∼104–108 s for the GW170817-like r-process heating, which is longer than the typical timescale of the long-lasting emission of sGRBs. The halting timescale is sensitive to the uncertainty of the r-process. Future observations of fallback halting could constrain the r-process heating on the scale of a year.


2018 ◽  
Vol 27 (13) ◽  
pp. 1842005 ◽  
Author(s):  
Kenta Hotokezaka ◽  
Paz Beniamini ◽  
Tsvi Piran

Neutron star mergers have been long considered as promising sites of heavy [Formula: see text]-process nucleosynthesis. We overview the observational evidence supporting this scenario including: the total amount of [Formula: see text]-process elements in the galaxy, extreme metal-poor stars, geological radioactive elemental abundances, dwarf galaxies and short gamma-ray bursts (sGRBs). Recently, the advanced LIGO and Virgo observatories discovered a gravitational-wave signal of a neutron star merger, GW170817, as well as accompanying multi-wavelength electromagnetic (EM) counterparts. The ultra-violet, optical and near infrared (n/R) observations point to [Formula: see text]-process elements that have been synthesized in the merger ejecta. The rate and ejected mass inferred from GW170817 and the EM counterparts are consistent with other observations. We however, find that, within the simple one zone chemical evolution models (based on merger rates with reasonable delay time distributions as expected from evolutionary models, or from observations of sGRBs), it is difficult to reconcile the current observations of the Eu abundance history of galactic stars for [Fe/H] [Formula: see text]. This implies that to account for the role of mergers in the galactic chemical evolution, we need a galactic model with multiple populations that have different spatial distributions and/or varying formation rates.


1996 ◽  
Vol 166 (7) ◽  
pp. 743-762 ◽  
Author(s):  
B.I. Luchkov ◽  
I.G. Mitrofanov ◽  
I.L. Rozental'
Keyword(s):  

2018 ◽  
Vol 189 (08) ◽  
pp. 785-802 ◽  
Author(s):  
Rafail L. Aptekar ◽  
Andrei M. Bykov ◽  
Sergei V. Golenetskii ◽  
Dmitrii D. Frederiks ◽  
Dmitry S. Svinkin ◽  
...  

1999 ◽  
Vol 518 (2) ◽  
pp. 901-908 ◽  
Author(s):  
J. P. Norris ◽  
J. T. Bonnell ◽  
K. Watanabe

Sign in / Sign up

Export Citation Format

Share Document