An Artificial Neural Networks Method for Solving Partial Differential Equations

Author(s):  
Abir Alharbi ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras
2021 ◽  
Author(s):  
Maximilian Gelbrecht ◽  
Niklas Boers ◽  
Jürgen Kurths

<p>When predicting complex systems such as parts of the Earth system, one typically relies on differential equations which can often be incomplete, missing unknown influences or higher order effects. By augmenting the equations with artificial neural networks we can compensate these deficiencies. The resulting hybrid models are also known as universal differential equations. We show that this can be used to predict the dynamics of high-dimensional chaotic partial differential equations, such as the ones describing atmospheric dynamics, even when only short and incomplete training data are available. In a first step towards a hybrid atmospheric model, simplified, conceptual atmospheric models are used in synthetic examples where parts of the governing equations are replaced with artificial neural networks. The forecast horizon for these high dimensional systems is typically much larger than the training dataset, showcasing the large potential of the approach.<span> </span></p>


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 1086-1094 ◽  
Author(s):  
Ahmad Jafarian ◽  
Dumitru Baleanu

Abstract Artificial neural networks are data processing systems which originate from human brain tissue studies. The remarkable abilities of these networks help us to derive desired results from complicated raw data. In this study, we intend to duplicate an efficient iterative method to the numerical solution of two famous partial differential equations, namely the wave-like and heat-like problems. It should be noted that many physical phenomena such as coupling currents in a flat multi-strand two-layer super conducting cable, non-homogeneous elastic waves in soils and earthquake stresses, are described by initial-boundary value wave and heat partial differential equations with variable coefficients. To the numerical solution of these equations, a combination of the power series method and artificial neural networks approach, is used to seek an appropriate bivariate polynomial solution of the mentioned initial-boundary value problem. Finally, several computer simulations confirmed the theoretical results and demonstrating applicability of the method.


Author(s):  
C. J. Zúñiga-Aguilar ◽  
J. F. Gómez-Aguilar ◽  
H. M. Romero-Ugalde ◽  
R. F. Escobar-Jiménez ◽  
G. Fernández-Anaya ◽  
...  

Author(s):  
Jean Chamberlain Chedjou ◽  
Kyandoghere Kyamakya

This paper develops and validates through a series of presentable examples, a comprehensive high-precision, and ultrafast computing concept for solving nonlinear ordinary differential equations (ODEs) and partial differential equations (PDEs) with cellular neural networks (CNN). The core of this concept is a straightforward scheme that we call "nonlinear adaptive optimization (NAOP),” which is used for a precise template calculation for solving nonlinear ODEs and PDEs through CNN processors. One of the key contributions of this work is to demonstrate the possibility of transforming different types of nonlinearities displayed by various classical and well-known nonlinear equations (e.g., van der Pol-, Rayleigh-, Duffing-, Rössler-, Lorenz-, and Jerk-equations, just to name a few) unto first-order CNN elementary cells, and thereby enabling the easy derivation of corresponding CNN templates. Furthermore, in the case of PDE solving, the same concept also allows a mapping unto first-order CNN cells while considering one or even more nonlinear terms of the Taylor's series expansion generally used in the transformation of a PDE in a set of coupled nonlinear ODEs. Therefore, the concept of this paper does significantly contribute to the consolidation of CNN as a universal and ultrafast solver of nonlinear ODEs and/or PDEs. This clearly enables a CNN-based, real-time, ultraprecise, and low-cost computational engineering. As proof of concept, two examples of well-known ODEs are considered namely a second-order linear ODE and a second order nonlinear ODE of the van der Pol type. For each of these ODEs, the corresponding precise CNN templates are derived and are used to deduce the expected solutions. An implementation of the concept developed is possible even on embedded digital platforms (e.g., field programmable gate array (FPGA), digital signal processor (DSP), graphics processing unit (GPU), etc.). This opens a broad range of applications. Ongoing works (as outlook) are using NAOP for deriving precise templates for a selected set of practically interesting ODEs and PDEs equation models such as Lorenz-, Rössler-, Navier Stokes-, Schrödinger-, Maxwell-, etc.


Sign in / Sign up

Export Citation Format

Share Document