nonlinear odes
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 64)

H-INDEX

12
(FIVE YEARS 5)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 254
Author(s):  
María S. Bruzón ◽  
Rafael de la Rosa ◽  
María L. Gandarias ◽  
Rita Tracinà

A family of third-order partial differential equations (PDEs) is analyzed. This family broadens out well-known PDEs such as the Korteweg-de Vries equation, the Gardner equation, and the Burgers equation, which model many real-world phenomena. Furthermore, several macroscopic models for semiconductors considering quantum effects—for example, models for the transmission of electrical lines and quantum hydrodynamic models—are governed by third-order PDEs of this family. For this family, all point symmetries have been derived. These symmetries are used to determine group-invariant solutions from three-dimensional solvable subgroups of the complete symmetry group, which allow us to reduce the given PDE to a first-order nonlinear ordinary differential equation (ODE). Finally, exact solutions are obtained by solving the first-order nonlinear ODEs or by taking into account the Type-II hidden symmetries that appear in the reduced second-order ODEs.


Fractals ◽  
2021 ◽  
Author(s):  
ZUBAIR AHMAD ◽  
FARHAD ALI ◽  
AISHA M. ALQAHTANI ◽  
NAVEED KHAN ◽  
ILYAS KHAN

Chemical processes are constantly occurring in all existing creatures, and most of them contain proteins that are enzymes and perform as catalysts. To understand the dynamics of such phenomena, mathematical modeling is a powerful tool of study. This study is carried out for the dynamics of cooperative phenomenon based on chemical kinetics. Observations indicate that fractional models are more practical to describe complex systems’ dynamics, such as recording the memory in partial and full domains of particular operations. Therefore, this model is modeled in terms of classical-order-coupled nonlinear ODEs. Then the classical model is generalized with two different fractional operators of Caputo and Atangana–Baleanu in a Caputo sense. Some fundamental theoretical analysis for both the fractional models is also made. Reaction speeds for the extreme cases of positive/negative and no cooperation are also calculated. The graphical solutions are achieved via numerical schemes, and the simulations for both the models are carried out through the computational software MATLAB. It is observed that both the fractional models of Caputo and Atangana–Baleanu give identical results for integer order, i.e. [Formula: see text]. By decreasing the fractional parameters, the concentration profile of the substrate [Formula: see text] takes more time to vanish. Moreover, binding of first substrate increases the reaction rate at another binding site in the case of extreme positive cooperation, while the opposite effect is noticed for the case of negative cooperativity. Furthermore, the effects of other parameters on concentration profiles of different species are shown graphically and discussed physically.


Author(s):  
Cheng Xue ◽  
Wu Yu-Chun ◽  
GuoPing Guo

Abstract While quantum computing provides an exponential advantage in solving linear differential equations, there are relatively few quantum algorithms for solving nonlinear differential equations. In our work, based on the homotopy perturbation method, we propose a quantum algorithm for solving n-dimensional nonlinear dissipative ordinary differential equations (ODEs). Our algorithm first converts the original nonlinear ODEs into other nonlinear ODEs which can be embedded into finite-dimensional linear ODEs. Then we solve the embedded linear ODEs with quantum linear ODEs algorithm and obtain a state ε-close to the normalized exact solution of the original nonlinear ODEs with success probability Ω(1). The complexity of our algorithm is O(gηTpoly(log(nT/ε))), where η, g measure the decay of the solution. Our algorithm provides exponential improvement over the best classical algorithms or previous quantum algorithms in n or ε.


2021 ◽  
Vol 10 (4) ◽  
pp. 608-615
Author(s):  
Hiranmoy Mondal ◽  
Sharmistha Ghosh ◽  
Pranab Kanti Roy ◽  
Sewli Chatterjee

We scrutinize and numerically investigate the behavior of magnetic nanofluid flow in stagnation region in the presence of ion-slip and Hall currents. Employing similarity technique, the governing equations modeling the boundary layer flow are switched into highly nonlinear ODEs. The resultant equations are then solved numerically by the method of spectral quasi-linearization. The effect of varying various pertinent parameters within the fluid flow are taken into account and the results are analyzed graphically. It may be noted that the velocity increases in the x- as well as z-directions with an increment in the Hall parameter. The concentration indicates a decreasing trend with increasing values of the Eckert number. The computed results also show that the volume fraction effects diminishes as the Schmidt number increases.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1472
Author(s):  
Umair Khan ◽  
Jamel Bouslimi ◽  
Aurang Zaib ◽  
Fahad S. Al-Mubaddel ◽  
Najma Imtiaz ◽  
...  

Aluminum nanoparticles are suitable for wiring power grids, such as local power distribution and overhead power transmission lines, because they exhibit high conductivity. These nanoparticles are also among the most utilized materials in electrical field applications. Thus, the present study investigated the impact of magnetic field on 3D crossflow in the streamwise direction with the impacts of Dufour and Soret. In addition, the effects of activation energy and chemical reaction were incorporated. The viscosity and thermal conductivity of nanofluids were premeditated by KKL correlation. Prominent PDEs (Partial Differential Equations) were converted into highly nonlinear ODEs (Ordinary Differential Equations) using the proper similarity technique and then analyzed numerically with the aid of the built-in bvp4c solver in MATLAB. The impact of diverse important variables on temperature and velocity was graphically examined. Additionally, the influences of pertaining parameters on the drag force coefficient, Nusselt number, and Sherwood number were investigated. Inspections revealed that the mass transfer rate decreases, while the heat transport increases with increasing values of the Soret factor. However, the Nusselt and Sherwood numbers validate the differing trend for rising quantities of the Dufour factor.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7279
Author(s):  
Jin Wei ◽  
Tao Yu ◽  
Dongping Jin ◽  
Mei Liu ◽  
Dengqing Cao ◽  
...  

A dynamic model of an L-shaped multi-beam joint structure is presented to investigate the nonlinear dynamic behavior of the system. Firstly, the nonlinear partial differential equations (PDEs) of motion for the beams, the governing equations of the tip mass, and their matching conditions and boundary conditions are obtained. The natural frequencies and the global mode shapes of the linearized model of the system are determined, and the orthogonality relations of the global mode shapes are established. Then, the global mode shapes and their orthogonality relations are used to derive a set of nonlinear ordinary differential equations (ODEs) that govern the motion of the L-shaped multi-beam jointed structure. The accuracy of the model is verified by the comparison of the natural frequencies solved by the frequency equation and the ANSYS. Based on the nonlinear ODEs obtained in this model, the dynamic responses are worked out to investigate the effect of the tip mass and the joint on the nonlinear dynamic characteristic of the system. The results show that the inertia of the tip mass and the nonlinear stiffness of the joints have a great influence on the nonlinear response of the system.


2021 ◽  
Vol 83 (12) ◽  
Author(s):  
A. Tenore ◽  
F. Russo ◽  
M. R. Mattei ◽  
B. D’Acunto ◽  
G. Collins ◽  
...  

AbstractA multiscale mathematical model is presented to describe de novo granulation, and the evolution of multispecies granular biofilms, in a continuously fed bioreactor. The granule is modelled as a spherical free boundary domain with radial symmetry. The equation governing the free boundary is derived from global mass balance considerations and takes into account the growth of sessile biomass as well as exchange fluxes with the bulk liquid. Starting from a vanishing initial value, the expansion of the free boundary is initiated by the attachment process, which depends on the microbial species concentrations within the bulk liquid and their specific attachment velocity. Nonlinear hyperbolic PDEs model the growth of the sessile microbial species, while quasi-linear parabolic PDEs govern the dynamics of substrates and invading species within the granular biofilm. Nonlinear ODEs govern the evolution of soluble substrates and planktonic biomass within the bulk liquid. The model is applied to an anaerobic, granular-based bioreactor system, and solved numerically to test its qualitative behaviour and explore the main aspects of de novo anaerobic granulation: ecology, biomass distribution, relative abundance, dimensional evolution of the granules and soluble substrates, and planktonic biomass dynamics within the bioreactor. The numerical results confirm that the model accurately describes the ecology and the concentrically layered structure of anaerobic granules observed experimentally, and that it can predict the effects on the process of significant factors, such as influent wastewater composition; granulation properties of planktonic biomass; biomass density; detachment intensity; and number of granules.


Author(s):  
M. S. Alqarni ◽  
Hassan Waqas ◽  
Sumeira Yasmin ◽  
Taseer Muhammad

The prime aim of this investigation is to discuss the two-dimensional steady analysis of hybrid nanoliquids in the existence of magnetohydrodynamics (MHD), thermally radiation and viscous dissipation effects over a linear stretchable sheet. Carbon nanotubes (SWCNT and MWCNT) with copper (Cu) are comprised in the propylene glycol-based fluid. The significance of propylene glycol-based fluid is affected under the exponential space-based heat source phenomenon. The remarkable role of propylene glycol on thermal transport of hybrid nanoliquids is influenced in the presence of temperature-dependent viscosity. The highly nonlinear governing partial differential structures are reduced to nonlinear ODEs by using suitable transformations. The transformed nonlinear ODEs of flow problem have been solved numerically by employing bvp4c (shooting) scheme with Lobatto-IIIA formula in MATLAB. The physical outcomes of involved parameters are obtained by utilizing the graphical and tabular data. The heat transport rate and the skin friction under the numerical data are also presented. From the results, we concluded that the velocity of fluid is declined for higher nanoparticles volume fraction. Velocity of fluid is declined with growing magnetic parameter. Furthermore, the temperature is upgraded with the growing thermal Biot number.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Alvaro H. Salas ◽  
Lorenzo J. H. Martinez ◽  
David L. R. Ocampo R.

In this work, we give approximate expressions for Jacobian and elliptic Weierstrass functions and their inverses by means of the elementary trigonometric functions, sine and cosine. Results are reasonably accurate. We show the way the obtained results may be applied to solve nonlinear ODEs and other problems arising in nonlinear physics. The importance of the results in this work consists on giving easy and accurate way to evaluate the main elliptic functions cn, sn, and dn, as well as the Weierstrass elliptic function and their inverses. A general principle for solving some nonlinear problems through elementary functions is stated. No similar approach has been found in the existing literature.


Author(s):  
Hannes Uecker

AbstractNumerical continuation and bifurcation methods can be used to explore the set of steady and time–periodic solutions of parameter dependent nonlinear ODEs or PDEs. For PDEs, a basic idea is to first convert the PDE into a system of algebraic equations or ODEs via a spatial discretization. However, the large class of possible PDE bifurcation problems makes developing a general and user–friendly software a challenge, and the often needed large number of degrees of freedom, and the typically large set of solutions, often require adapted methods. Here we review some of these methods, and illustrate the approach by application of the package to some advanced pattern formation problems, including the interaction of Hopf and Turing modes, patterns on disks, and an experimental setting of dead core pattern formation.


Sign in / Sign up

Export Citation Format

Share Document