scholarly journals Linear and nonlinear Landau resonance of kinetic Alfvén waves: Consequences for electron distribution and wave spectrum in the solar wind

2011 ◽  
Vol 18 (1) ◽  
pp. 012307 ◽  
Author(s):  
L. Rudakov ◽  
M. Mithaiwala ◽  
G. Ganguli ◽  
C. Crabtree
2005 ◽  
Vol 23 (12) ◽  
pp. 3699-3713 ◽  
Author(s):  
B. Grison ◽  
F. Sahraoui ◽  
B. Lavraud ◽  
T. Chust ◽  
N. Cornilleau-Wehrlin ◽  
...  

Abstract. On 23 March 2002, the four Cluster spacecraft crossed in close configuration (~100 km separation) the high-altitude (10 RE) cusp region. During a large part of the crossing, the STAFF and EFW instruments have detected strong electromagnetic wave activity at low frequencies, especially when intense field-aligned proton fluxes were detected by the CIS/HIA instrument. In all likelihood, such fluxes correspond to newly-reconnected field lines. A focus on one of these ion injection periods highlights the interaction between waves and protons. The wave activity has been investigated using the k-filtering technique. Experimental dispersion relations have been built in the plasma frame for the two most energetic wave modes. Results show that kinetic Alfvén waves dominate the electromagnetic wave spectrum up to 1 Hz (in the spacecraft frame). Above 0.8 Hz, intense Bernstein waves are also observed. The close simultaneity observed between the wave and particle events is discussed as an evidence for local wave generation. A mechanism based on current instabilities is consistent with the observations of the kinetic Alfvén waves. A weak ion heating along the recently-opened field lines is also suggested from the examination of the ion distribution functions. During an injection event, a large plasma convection motion, indicative of a reconnection site location, is shown to be consistent with the velocity perturbation induced by the large-scale Alfvén wave simultaneously detected.


2016 ◽  
Vol 361 (7) ◽  
Author(s):  
P. Nandal ◽  
N. Yadav ◽  
R. P. Sharma ◽  
M. L. Goldstein

2015 ◽  
Vol 804 (2) ◽  
pp. L36 ◽  
Author(s):  
Yuguang Tong ◽  
Stuart D. Bale ◽  
Christopher H. K. Chen ◽  
Chadi S. Salem ◽  
Daniel Verscharen

2013 ◽  
Vol 79 (5) ◽  
pp. 927-931 ◽  
Author(s):  
NITIN YADAV ◽  
R. P. SHARMA

AbstractThe nonlinear interaction of kinetic Alfvén waves (KAWs) with other possible plasma modes is considered to be responsible for the observed solar wind turbulent spectrum. In the present paper, a new channel of interaction between a KAW and an obliquely propagating Alfvén wave (AW) has been proposed. The governing dynamical equations are derived and the nonlinear interaction between the two wave modes KAW and AW is studied. The growth rate of modulational instability has been calculated. The nonlinear evolution of KAW filamentation and turbulent spectra has also been discussed. In the inertial range, energy cascade follows nearly Kolmogorov scaling, and after inertial range it follows −2.5 scaling in dispersive range. The obtained results indicate that the proposed mechanism may be responsible for transferring the energy from smaller wavenumbers to larger wavenumbers in the solar wind plasmas. The relevance of the present study with recent Cluster spacecraft observations has also been pointed out.


Sign in / Sign up

Export Citation Format

Share Document