Stability and chaotification of vibration isolation floating raft systems with time-delayed feedback control

2011 ◽  
Vol 21 (3) ◽  
pp. 033115 ◽  
Author(s):  
Y. L. Li ◽  
D. L. Xu ◽  
Y. M. Fu ◽  
J. X. Zhou
2013 ◽  
Vol 23 (06) ◽  
pp. 1350096 ◽  
Author(s):  
YINGLI LI ◽  
DAOLIN XU ◽  
YIMING FU ◽  
JIAXI ZHOU

Line spectrum of noise radiated from machinery vibrations of underwater vehicles is one of the most harmful signals that expose the characteristics of vehicles and locations. In order to distort the features and restrain the intensity of the line spectra, we attempt to chaotify the vibration system by time delay control. To avoid blindly numerical testing of the control parameters, stability of a two-dimensional vibration isolation floating raft system with two time-delayed feedback control is studied in this paper, aiming to provide guidance for chaotification. The system with dual equal time delay is investigated by the generalized strum method and the polynomial eigenvalues are adopted to analyze the stability of the controlled vibration isolation system with two unequal time delays. The critical control gains and delays for stability switches are obtained. By adjusting the control parameters beyond stable region, it is feasible to chaotify the system. Numerical simulations are conducted to compare the effect of two time delay with different control parameters and different control scheme to complicate the vibration isolation system.


Sign in / Sign up

Export Citation Format

Share Document