vibration isolation system
Recently Published Documents


TOTAL DOCUMENTS

667
(FIVE YEARS 112)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mhia Md Zaglul Shahadat ◽  
Takeshi Mizuno ◽  
Masaya Takasaki ◽  
Fazlur Rashid ◽  
Yuji Ishino

This paper presents the isolation of vibration through the acceleration feedback of the Kalman filter. In this paper, vibration isolation was analyzed both analytically and experimentally through the estimation of the Kalman filter (KF). A negative stiffness mechanism was used to reduce the level of vibration for the developed dynamic system. The technique of negative stiffness can provide stiffness of infinite level to low stiffness as well as disturbance generated by the ground vibration directly. The performance of an isolation system through a mechanism of negative stiffness was improved by the addition of acceleration feedback. Acceleration was measured using a microelectromechanical (MEMS) type accelerometer instead of traditional servo type accelerometers due to lower cost. However, the output of a microelectromechanical (MEMS) type accelerometer is usually noisy. To avoid this difficulty, an acceleration that was estimated by a Kalman filter was considered in the acceleration feedback instead of directly measured acceleration. The dynamic behaviors of the system were compared for both the Kalman-filtered acceleration and the directly measured acceleration feedback. It is observed that the former has a significant effect on the improvement of the characteristics of the vibration isolation systems than later.


Author(s):  
V.V. Kovalev ◽  

At the present, the improvement of vibration isolation systems for equipment, machines and units remains an urgent task. The ways to solve this problem are based on the optimization of existing structures, the development and application of new vibration-insulating elements as well as the improvement of design methods. In particular, to ensure the reliable functioning of agricultural machines, units, working elements and other mechanization means for the technological processes of agricultural production one of the perspective areas is the use of hydraulic vibra-tion mounts in suspension systems for units. This type of mounts is used to mount engines, cabins of agricultural vehicles, and power units. This paper discusses the simu-lation of the dynamic behavior of a power unit attached to a fixed base by the hydraulic mounts. It is proposed to use approximating functions modelling real stiffness character-istics of the mounts. A comparative analysis with a similar design using rubber-metal mounts as vibration-insulating elements is presented.


2021 ◽  
Author(s):  
Youliang Jiang ◽  
Chunsheng Song ◽  
Xin Ma ◽  
Han Wu ◽  
Zhihui Mai

Abstract With the improvement of machining accuracy, external low frequency vibration has become one of the most important factors affecting the performance of equipment. The theory of quasi-zero stiffness vibration isolation shows favorable low frequency vibration isolation effect. Based on our previous research on the structure of magnetic-air hybrid quasi-zero stiffness vibration isolation system, the nonlinear mechanical expression of positive and negative stiffness structure has been analyzed in this paper, to improve application of the system and provide a theoretical basis for sequential studies of active control. To analyze the judgement criterion of the quasi-zero stiffness, an accurate mechanical model was first established. Then, the dynamical model based on external low frequency vibration was developed, to investigate the stability and natural frequency and deduce the amplitude frequency characteristics and displacement transfer rate. Finally, we carried out simulation and experimental analysis to verify the stiffness of high static and low dynamic and the low frequency vibration isolation effect of the vibration isolation system.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2232
Author(s):  
Zhibo Sun ◽  
Yan Shi ◽  
Na Wang ◽  
Jian Zhang ◽  
Yixuan Wang ◽  
...  

Pneumatic suspension is the most significant subsystem for an automobile. In this paper, a simplified and novel pneumatic spring structure with only a conical rubber surface is presented and designed to reduce the influence of external factors besides the pneumatic. The nonlinear stiffness of the pneumatic spring is analyzed based on the ideal gas model and material mechanics. Natural frequency analysis and the transmission rate of the pneumatic suspension are obtained as two effect criteria for the dynamic model. The vibration isolation system platform is established in both simulation and prototype tests. With the results from the simulation, the rules of the pneumatic suspension are analyzed, and the optimal function of mass and pressure is achieved. The experiment results show the analysis of the simulation to be effective. This achievement will become an important basis for future research concerning precise active control of the pneumatic suspension in vehicles.


Sign in / Sign up

Export Citation Format

Share Document