Tunneling into high Tc superconductors—the effect of a two-dimensional van Hove singularity

1992 ◽  
Author(s):  
P. J. M. van Bentum ◽  
C. C. Tsuei
1995 ◽  
Vol 09 (09) ◽  
pp. 1067-1080 ◽  
Author(s):  
M.L. HORBACH ◽  
H. KAJÜTER

Experimental indications for the role of the van Hove singularity (vHs) in the electronic density of states of high Tc superconductors are discussed. It is argued that (i) like the resistivity, the measured temperature and doping dependences of the normal state electronic specific heat of YBCO are consistent with the existence of a vHs and (ii) the doping dependence of Tc in the underdoped and optimally doped regimes may be accounted for mainly by a vHs. Further, we discuss the suppression of the quasiparticle scattering rate below Tc, and the coherence lengths in the hole-doped materials and NCCO. Assuming that the same mechanism for superconductivity operates in the electron-doped and the hole-doped cuprates, we argue that the bosonic mode that causes the superconductivity is strongly influenced by the doping in the overdoped regime. We further argue that this boson involves an energy scale larger than that of phonons and is only weakly coupled to the charge carriers.


1989 ◽  
Vol 03 (05) ◽  
pp. 711-717 ◽  
Author(s):  
YU. T. PAVLUKHIN ◽  
N. G. HAINOVSKY ◽  
YA. YA. MEDIKOV ◽  
A. I. RYKOV

1995 ◽  
Vol 10 (8) ◽  
pp. 1864-1871 ◽  
Author(s):  
K. Parlinski ◽  
Y. Watanabe ◽  
K. Ohno ◽  
Y. Kawazoe

A two-dimensional model of oxygen-deficit layer of superconducting material YBa2Cu3O7 has been simulated by the molecular-dynamics technique in order to study the influence of the impurities in the site of copper on the low-temperature microstructure. The microstructure pattern arises as a result of quenching the system from a high-temperature tetragonal phase to the low-temperature orthorhombic one and subsequent annealing. The potential of the impurity is modified in such a way that it promotes occupation of opposite nearest-neighbor sites around impurity by an oxygen and vacancy simultaneously. The simulations of the annealing processes showed that the domain pattern becomes very tiny with increased concentration of randomly distributed impurities. Domains of larger sizes would appear if the impurities were able to diffuse to the domain walls. This is confirmed by annealing the sample containing linear chains of impurities. The tweed microstructure depends on the magnitude of the force constants of the elastic subsystem, and at too large coupling the randomly distributed impurities are not able to pin the stiff domain walls. The results resemble the electron-microscope photographs made for cobalt in YBa2(Cu1−xCox)3O7−δ.


Sign in / Sign up

Export Citation Format

Share Document