A non‐Gaussian theory of rubberlike elasticity based on rotational isomeric state simulations of network chain configurations. I. Polyethylene and polydimethylsiloxane short‐chain unimodal networks

1983 ◽  
Vol 79 (11) ◽  
pp. 5705-5709 ◽  
Author(s):  
J. E. Mark ◽  
J. G. Curro
2005 ◽  
Vol 20 (9) ◽  
pp. 2443-2455 ◽  
Author(s):  
Lisa Mauck Weiland ◽  
Emily K. Lada ◽  
Ralph C. Smith ◽  
Donald J. Leo

Presently, rotational isomeric state (RIS) theory directly addresses polymer chain conformation as it relates to mechanical response trends. The primary goal of this work is to explore the adaptation of this methodology to the prediction of material stiffness. This multiscale modeling approach relies on ionomer chain conformation and polymer morphology and thus has potential as both a predictive modeling tool and a synthesis guide. The Mark–Curro Monte Carlo methodology is applied to generate a statistically valid number of end-to-end chain lengths via RIS theory for four solvated Nafion® cases. For each case, a probability density function for chain length is estimated using various statistical techniques, including the classically applied cubic spline approach. It is found that the stiffness prediction is sensitive to the fitting strategy. The significance of various fitting strategies, as they relate to the physical structure of the polymer, are explored so that a method suitable for stiffness prediction may be identified.


Sign in / Sign up

Export Citation Format

Share Document