material stiffness
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 73)

H-INDEX

21
(FIVE YEARS 5)

Author(s):  
Atsutaka Tamura ◽  
Soichiro Nishikawa

Abstract The spinal cord is encased by spinal meninges called the pia, arachnoid, and dura maters. Among these membranes, the dura mater is the thick and outermost layer and is the toughest and strongest. Thus, mechanical failure of the dura mater can lead to spontaneous cerebrospinal fluid leaks or hypovolemia, resulting in a complication or exacerbation of unfavorable symptoms involved in a mild traumatic brain injury. To develop protective equipment that can help prevent such injuries, accurate characterization of the spinal dura mater is required, especially regarding the mechanical properties at different anatomical sites. In this study, we used an equiload biaxial tensile tester to investigate the mechanical properties of porcine meningeal dura mater along the whole length of the spine. The resultant strain of the dorsal side was greater than that of the ventral side (P < 0.01), while the circumferential direction was significantly stiffer than the longitudinal direction (P < 0.01) at lower strains regardless of the spinal level. We also found that the material stiffness progressively increased from the cervical level to the thoracolumbar level at lower strains, which implies that the dura mater inherently possesses structurally preferred features or functions because the neck requires sufficient flexibility for daily activities. Further, Young's modulus was significantly less on the dorsal side than on the ventral side at higher strains (P < 0.05), suggesting that the dorsal side is readily elongated by spinal flexion even within the range of physiological motion.


Author(s):  
Fayez Elkholy ◽  
Silva Schmidt ◽  
Falko Schmidt ◽  
Masoud Amirkhani ◽  
Bernd G. Lapatki

Abstract Background This in vitro study investigated the effect of three distinct daily loading/unloading cycles on force delivery during orthodontic aligner therapy. The cycles were applied for 7 days and were designed to reflect typical clinical aligner application scenarios. Materials and methods Flat polyethylene terephthalate glycol (PET-G) specimens (Duran®, Scheu Dental, Iserlohn, Germany) with thicknesses ranging between 0.4 and 0.75 mm were tested in a three-point-bending testing machine. Measurements comprised loading/unloading intervals of 12 h/12 h, 18 h/6 h, and 23 h/1 h, and specimens were exposed to bidistilled water during loading to simulate intraoral conditions. Results A very large decay in force for the PET‑G specimens could already be observed after the first loading period, with significantly different residual force values of 24, 20, and 21% recorded for the 12 h/12 h, 18 h/6 h, and 23 h/1 h loading/unloading modes, respectively (Mann–Whitney U test, p < 0.01). In addition, further decays in force from the first to the last loading period at day 7 of 13.5% (12 h/12 h), 9.7% (18 h/6 h), and 8.4% (23 h/1 h) differed significantly among the three distinct loading modes (Mann–Whitney U test, p < 0.01). Conclusion Although the initial material stiffness of PET‑G is relatively high, the transmission of excessive forces is attenuated by the high material-related force decay already within a few hours after intraoral insertion.


2021 ◽  
Vol 2 (4) ◽  
pp. 942-955
Author(s):  
Carmela Riccio ◽  
Marco Civera ◽  
Oliver Grimaldo Ruiz ◽  
Perla Pedullà ◽  
Mariana Rodriguez Reinoso ◽  
...  

Different mechanical properties characterise the materials of 3D printed components, depending on the specific additive manufacturing (AM) process, its parameters, and the post-treatment adopted. Specifically, stereolithography (SLA) uses a photopolymerisation technique that creates solid components through selective solidification. In this study, 72 specimens were 3D printed using 12 commercial-grade methacrylate resins and tested under uniaxial tensile loads. The resin specimens were evaluated before and after curing. The recommended cure temperature and time were followed for all materials. The stress-strain curves measured during the testing campaign were evaluated in terms of maximum tensile strength, Young’s modulus, ductility, resilience, and toughness. The results reveal that the curing process increases the material stiffness and resistance to tensile loads. However, it was found that the curing process generally reduces the plasticity of the resins, causing a more or less marked brittle behaviour. This represents a potential limitation to the use of SLA 3D printing for structural elements which require some plasticity to avoid dangerous sudden failures.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4032
Author(s):  
Shu-Yu Jhou ◽  
Ching-Chi Hsu ◽  
Jui-Chia Yeh

This paper proposes a dynamic drop weight impact simulation to predict the impact response of 3D printed polymeric sandwich structures using an explicit finite element (FE) approach. The lattice cores of sandwich structures were based on two unit cells, a body-centred cubic (BCC) and an edge-centred cubic (ECC). The deformation and the peak acceleration, referred to as the g-max score, were calculated to quantify their shock absorption characteristic. For the FE results verification, a falling mass impact test was conducted. The FE results were in good agreement with experimental measurements. The results suggested that the strut diameter, strut length, number and orientation, and the apparent material stiffness of the lattice cores had a significant effect on their deformation behavior and shock absorption capability. In addition, the BCC lattice core with a thinner strut diameter and low structural height might lead to poor shock absorption capability caused by structure collapse and border effect, which could be improved by increasing its apparent material stiffness. This dynamic drop impact simulation process could be applied across numerous industries such as footwear, sporting goods, personal protective equipment, packaging, or biomechanical implants.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gilles Decroly ◽  
Pierre Lambert ◽  
Alain Delchambre

The rise of soft robotics opens new opportunities in endoscopy and minimally invasive surgery. Pneumatic catheters offer a promising alternative to conventional steerable catheters for safe navigation through the natural pathways without tissue injury. In this work, we present an optimized 6 mm diameter two-degree-of-freedom pneumatic actuator, able to bend in every direction and incorporating a 1 mm working channel. A versatile vacuum centrifugal overmolding method capable of producing small geometries with a variety of silicones is described, and meter-long actuators are extruded industrially. An improved method for fiber reinforcement is also presented. The actuator achieves bending more than 180° and curvatures of up to 0.1 mm−1. The exerted force remains below 100 mN, and with no rigid parts in the design, it limits the risks of damage on surrounding tissues. The response time of the actuator is below 300 ms and therefore not limited for medical applications. The working space and multi-channel actuation are also experimentally characterized. The focus is on the study of the influence of material stiffness on mechanical performances. As a rule, the softer the material, the better the energy conversion, and the stiffer the material, the larger the force developed at a given curvature. Based on the actuator, a 90 cm long steerable catheter demonstrator carrying an optical fiber is developed, and its potential for endoscopy is demonstrated in a bronchial tree phantom. In conclusion, this work contributes to the development of a toolbox of soft robotic solutions for MIS and endoscopic applications, by validating and characterizing a promising design, describing versatile and scalable fabrication methods, allowing for a better understanding of the influence of material stiffness on the actuator capabilities, and demonstrating the usability of the solution in a potential use-case.


Author(s):  
Scott Newacheck ◽  
Anil Singh ◽  
George Youssef

Abstract In the current work, quantitative analysis of magnetoelectric particulate composite material system explicated the main mechanisms responsible for the below-optimal performance of this class of materials. We considered compliant particulate composite materials, with constituents relevant to technological and scientific interest, leading to 0-3 Terfenol-D/PVDF-TrFE composite samples. To this objective, thick Terfenol-D/PVDF-TrFE films (10-15 µm) were fabricated and analyzed for chemical, mechanical, and magnetic properties to demonstrate their suitability for energy applications in harsh environmental conditions. The vigorous experimental characterization of the composite exemplified the multifunctional properties, quantifying the interrelationship between the composition and performance. We observed that the addition of magnetic particles to the electroactive copolymer matrix resulted in improvement in the mechanical and electrical properties since the particles acted as pinning sites, hindering the deformation of the chains and enhancing polarization. The effective modulus model was amended to account for the crystallization-induced change in material stiffness. We also measured and computed the magnetic particles motion to explicate the detrimental effect of mobility and migration on the overall magnetoelectric coupling performance of the composite. Thereby, we derived an analytical model based on the magnetic force due to the co-presence of alternating and constant magnetic fields, and the viscous drag force due to the viscoelastic properties of the electroactive copolymer matrix. We demonstrated that the mobility of the particles plays a crucial role in the short and long term performance of magnetoelectric coupling in multiferroic particulate composites, uncovering the underpinnings of the dichotomy in performance between experimentally measured and analytically predicted coupling coefficients., thus, allowing for the proposal of new approaches to realize the scientific potential of magnetoelectric particulate composites in energy applications.


2021 ◽  
Author(s):  
NAND KISHORE SINGH ◽  
KAZI ZAHIR UDDIN ◽  
RATNESHWAR JHA ◽  
BEHRAD KOOHBOR

Understanding the hierarchy in the mechanical behavior of heterogeneous materials requires a systematic characterization of the material response at different length scales, as well as the nature and characteristics of the transitional scales. Characterization of such transitional length scales has been carried out in the past by analytical models that calculate and compare stiffness values at micro and macro scales. The convergence of the material stiffness at the two scales has been used as the criterion for quantification of the so-called transitional length scales. These stiffness calculation approaches are based on the idea of local strain and stress distributions obtained from complex finite element models. Recent advancements in full-field experimental strain measurements have made it possible to identify the transitional length scales in fiber composites based on pure experimental measurements without the requirement of local stress analysis. In this work, we study the validity of such ‘strain-based’ approaches that are used to identify the RVE size in unidirectional fiber composites. Our modeling platform replicates the realistic conditions present in experimental measurements through the randomization of fiber locations and volume fraction within an epoxy matrix.


2021 ◽  
Author(s):  
Nicholas E Bishop ◽  
Phil Wright ◽  
Martin Preutenborbeck

Abstract BackgroundPress-fitted implants are implanted by impaction to ensure adequate seating, but without overloading the components, the surgeon, or the patient. To understand this interrelationship a uniaxial discretised model of the hammer/introducer/implant/bone/soft-tissues was developed. A parametric analysis of applied energy, component materials and geometry, and interaction between implant-bone and bone-soft-tissue was performed, with implant seating and component stresses as outcome variables. ResultsTo reduce stresses without compromising seating, the following outcomes were observed: Less energy per hit with more hits / Increase hammer mass / Decrease introducer mass / Increase implant-bone resistance (eg stem roughness). Material stiffness and patient mechanics were found to be less important.ConclusionsThis simple model provides a basic understanding of how stress waves travel through the impacted system, and an understanding of their relevance to component design.


2021 ◽  
Vol 12 ◽  
Author(s):  
Edward P. Manning ◽  
Abhay B. Ramachandra ◽  
Jonas C. Schupp ◽  
Cristina Cavinato ◽  
Micha Sam Brickman Raredon ◽  
...  

Hypoxia adversely affects the pulmonary circulation of mammals, including vasoconstriction leading to elevated pulmonary arterial pressures. The clinical importance of changes in the structure and function of the large, elastic pulmonary arteries is gaining increased attention, particularly regarding impact in multiple chronic cardiopulmonary conditions. We establish a multi-disciplinary workflow to understand better transcriptional, microstructural, and functional changes of the pulmonary artery in response to sustained hypoxia and how these changes inter-relate. We exposed adult male C57BL/6J mice to normoxic or hypoxic (FiO2 10%) conditions. Excised pulmonary arteries were profiled transcriptionally using single cell RNA sequencing, imaged with multiphoton microscopy to determine microstructural features under in vivo relevant multiaxial loading, and phenotyped biomechanically to quantify associated changes in material stiffness and vasoactive capacity. Pulmonary arteries of hypoxic mice exhibited an increased material stiffness that was likely due to collagen remodeling rather than excessive deposition (fibrosis), a change in smooth muscle cell phenotype reflected by decreased contractility and altered orientation aligning these cells in the same direction as the remodeled collagen fibers, endothelial proliferation likely representing endothelial-to-mesenchymal transitioning, and a network of cell-type specific transcriptomic changes that drove these changes. These many changes resulted in a system-level increase in pulmonary arterial pulse wave velocity, which may drive a positive feedback loop exacerbating all changes. These findings demonstrate the power of a multi-scale genetic-functional assay. They also highlight the need for systems-level analyses to determine which of the many changes are clinically significant and may be potential therapeutic targets.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2193
Author(s):  
Alexey Liogky ◽  
Pavel Karavaikin ◽  
Victoria Salamatova

The numerical assessment of reconstructed aortic valves competence and leaflet design optimization rely on both coaptation characteristics and the diastolic valve configuration. These characteristics can be evaluated by the shell or membrane formulations. The membrane formulation is preferable for surgical aortic valve neocuspidization planning since it is easy to solve. The results on coaptation zone sensitivity to the anisotropy of aortic leaflet material are contradictive, and there are no comparisons of coaptation characteristics based on shell and membrane models for anisotropic materials. In our study, we explore for the first time how the reduced model and anisotropy of the leaflet material affect the coaptation zone and the diastolic configuration of the aortic valve. To this end, we propose the method to mimic the real, sutured neo-leaflet, and apply our numerical shell and membrane formulations to model the aortic valve under the quasi-static diastolic pressure varying material stiffness and anisotropy directions. The shell formulation usually provides a lesser coaptation zone than the membrane formulation, especially in the central zone. The material stiffness does influence the coaptation zone: it is smaller for stiffer material. Anisotropy of the leaflet material does not affect significantly the coaptation characteristics, but can impact the deformed leaflet configuration and produce a smaller displacement.


Sign in / Sign up

Export Citation Format

Share Document